Adapting to Climate Change in Melbourne's east

A Regional Risk Assessment for Member Councils of the Eastern Alliance for Greenhouse Action

August 2014

This report is prepared by the Eastern Alliance for Greenhouse Action (EAGA) and has been funded by the Victorian State Government through a *Victorian Adaptation and Sustainability Partnership* (VASP) grant.

EAGA is a formal collaboration of seven Councils in Melbourne's east, working together on regional programs that reduce greenhouse gas emissions and facilitate regional adaptation. EAGA consists of the following member Councils:

- City of Boroondara
- Knox City Council
- Maroondah City Council
- Monash City Council
- City of Stonnington
- City of Whitehorse
- Yarra Ranges Council

Report prepared by Rob Law, EAGA Adaptation Officer and reviewed by Scott Mckenry, EAGA Regional Coordinator and the Adaptation Roadmap Project Control Group.

The Project Control Group consists of Lynn Hebblethwaite (Maroondah City Council), Nina Thomas and Anna Mezzetti (Monash City Council), Sarah Buckley (City of Stonnington), Mathew Dixon (City of Boroondara), Andriana Kursar (City of Whitehorse), Rachel Murphy (Yarra Ranges Council), Sam Sampanthar (Knox City Council), Scott Mckenry (EAGA) and Ben Johnson (Department of Environment and Primary Industries). Additional support for the project was also provided by Nelly Belperio, Dale Bristow and Grant Meyer (Maroondah City Council), Rebecca Robson (City of Stonnington), Michaela Skett (City of Boroondara), Miho Portelli and Ian Barnes (City of Whitehorse), Anthony Mann (Yarra Ranges Council), Ellen Mitchell (Knox City Council), Andrea Fernandez (Monash City Council) and Connie Hughes (DEPI).

The Technical Reference Group provided support and review of the regional risks and consists of Dr. Hartmut Fuenfgeld (RMIT), Professor David Griggs (Monash Sustainability Institute), Gitanjeli Bedi (National Centre for Sustainability), Professor Rod Keenan (Melbourne University), Professor Jon Barnett (Melbourne University), Eleanor Mckeough (Melbourne Water), Paul Peake (Victorian Environmental Assessment Council), and Emmaline Froggatt (Port Phillip and Western Port Catchment Management Authority).

Executive Summary

The following Regional Climate Change Risk Assessment is provided as part of the Eastern Alliance for Greenhouse Action (EAGA) Climate Adaptation Roadmap project. The Climate Change Adaptation Roadmap Project is funded through a Victorian Adaptation and Sustainability Partnership (VASP) grant. The report is based upon the outcomes of a series of workshops and interviews conducted across the EAGA Councils from May to August 2014, as well as an extensive desktop review of existing climate risk assessments. The report presents:

- A summary of the regional climate change observations and projections
- Key priority risks for the eastern Councils from climate change
- A gap analysis of current Council plans, strategies and risk registers
- Key recommendations for integrating climate change into Council risk registers

Climate change is an immediate threat that poses multiple risks to the core functions and service

delivery objectives of Councils in Eastern Melbourne. Melbourne's East is already experiencing the impacts of climate change, with an increase in average and extreme temperatures, and a decline in average rainfall. In the coming decades, it can expect to experience increasingly hotter drier conditions with the following impacts:

"Climate change is an immediate threat creating multiple risks to the core objectives of Councils in Eastern Melbourne"

- Increased frequency, duration and severity of heat waves
- Decreased average rainfall and more severe, prolonged drought conditions
- Less regular but more intense rainfall and storm events
- Significant increase in bushfire danger days

The hotter drier conditions combined with an increase in the frequency, severity and extent of extreme weather events is likely to multiple existing risks faced by Councils. Some of the implications of the changing climate include:

- Reduced service delivery and loss of business continuity
- Increased demand on council facilities and resources
- Increased damage to council assets
- Unbudgeted financial impacts from cumulative impacts of climate change
- Decreased public health and safety and mental and physical wellbeing
- Loss of environmental amenity and biodiversity values
- More frequent energy, transport and communications disruptions
- Reduced regional economic development
- Reduced food, water and energy security
- Increase in liability issues

"Hotter drier conditions and more extreme weather events will multiply many existing risks" Some of these risks are being experienced now. Most if not all of these risks will be exacerbated over coming decades unless there is much more proactive planning and consideration of climate change in decision making across council service areas. Furthermore, it is important to recognise that Councils make many daily decisions that have long time frames such as the planting of street trees, approvals of a new housing estates, and installation of new

drainage infrastructure. Therefore there is an important need to integrate the best available evidence of what climatic conditions and associated stressors might look like over the lifetime of a decision.

Understanding each individual Council's existing vulnerability to climate change is critical in order to prioritise solutions and strategies to reduce the multiple risks that Councils face in the future. The objective of this regional risk assessment is to help each of the Councils identify and understand the breadth of risks faced to their assets, operations and areas of service delivery.

This report strongly recommends that each of the Councils adopt climate change as a key strategic risk. Furthermore, it is important to give greater consideration of the operational risks that climate change poses, and the extent and breadth for how the responsibilities for these risks are allocated across each service area. "It is critical that Councils mainstream climate change in decision making and risk management"

Whilst this report has a regional focus, it has also been developed to be used as a working guide for individual Councils to embed climate change throughout their risk registers. Some guidance is also offered towards mainstreaming climate change in existing plans, strategies and policies across Council.

The priority risks contained in this report will inform the basis of the next phase of the Adaptation Roadmap project. This next phase will seek to identify and prioritise regional adaptation initiatives that can reduce the common risks across the eastern Councils. Importantly, the project will deliver a clear adaptation roadmap that will harmonise regional planning, create economies of scale in response actions and enable sharing and pooling of resources.

"There are many positive opportunities for adapting to climate change that can deliver co benefits to Council and the community"

Table of Contents

1. Introduction	1
1.1 The Eastern Alliance for Greenhouse Action	1
1.2 Climate Change Adaptation Roadmap project	2
1.3 Project rationale	3
1.4 Project Scope	3
1.5 Regional profile	3
2. Project Methodology	4
2.1 Risk assessment approach	4
2.2 Risk Workshops	4
2.3 Stakeholder engagement	6
2.4 Regional risk assessment	6
3. Climate change in Melbourne's East	9
3.1 Overview	9
3.2 Climate change projections for the EAGA region	10
3.3 Timeframes	11
4. Priority Regional Risks	14
4.1 Community Planning, Services and Health	17
Summary of key risks	17
Supporting key documentation/literature	17
Key relevant Council plans/strategies	17
4.2 Planning and Development	20
Summary of key risks	20
Supporting key documentation/literature	20
Relevant Council plans/strategies	21
4.3 Corporate	23
Summary of key risks	23
Supporting key documentation/literature	23
Relevant Council plans/strategies	23
4.4 Infrastructure and assets	26
Summary of key risks	26
Supporting key documentation/literature	26

Relevant Council plans/strategies	26
4.5 Sustainability and Environment	29
Summary of key risks	29
Supporting key documentation/literature	29
Relevant Council plans/strategies	29
4.6 Emergency Management	32
Summary of key risks	32
Supporting key documentation/literature	32
Relevant Council plans/strategies	32
5. Council preparedness to deal with Climate Change	34
5.1 Climate change and strategic risks across EAGA Councils	34
5.2 Operational risks across EAGA Councils	35
5.3 Council plans, strategies and policies	35
Key Recommendations	39
Next Steps	39
References	40
Appendix 1: Council climate risk registers	1

1. Introduction

1.1 The Eastern Alliance for Greenhouse Action

The Eastern Alliance for Greenhouse Action (EAGA) is a formal collaboration of seven Councils in Melbourne's east, working together on regional programs that reduce greenhouse gas emissions and facilitate regional adaptation. The Eastern Alliance for Greenhouse Action (EAGA) consists of the following member Councils:

- City of Boroondara
- Knox City Council
- Maroondah City Council
- Monash City Council
- City of Stonnington
- City of Whitehorse
- Yarra Ranges Council

EAGA was formed in 2008 in response to community concerns about climate change and a desire to drive environmental sustainability initiatives in a coordinated manner in the eastern region. EAGA's members identified the need to provide leadership, overcome jurisdictional barriers and work more collaboratively. Accordingly, EAGA is committed to responding to the challenges of climate change through the delivery of programs that aim to:

- Reduce greenhouse gas emissions throughout the region
- Provide support for regional adaptation to climate change impacts

Figure 1: The Eastern Alliance for Greenhouse Action Councils

1.2 Climate Change Adaptation Roadmap project

In October 2013, EAGA was awarded a grant through the Victorian Adaptation Sustainability Partnership (VASP) to develop a *Climate Change Adaptation Roadmap* for decision makers in Melbourne's East.

The objectives of the project are to:

- Ensure Climate Change risk management and adaptation actions are mainstreamed across council operations
- Harmonise regional planning, create economies of scale, enable sharing and pooling of resources

The outputs of the project include:

• An integrated regional risk assessment for the EAGA region, focusing on the risks shared by the member Councils

- A regional adaptation roadmap, prioritising cross municipal response actions addressing the key risk areas
- Revised Council policies, plans and strategies to incorporate adaptation actions (with clearly linked accountabilities)
- An ongoing monitoring and evaluation framework to ensure the roadmap and adaptive responses can evolve over time with changing Council priorities

1.3 Project rationale

This project addresses a number of the national adaptation priorities indentified by COAG's Select Council on Climate Change (2012). It provides a mechanism for the State Government to deliver the strategies within the Victorian Climate Change Adaptation Plan, particularly its commitment to strengthen partnerships with local-government and communities. Adaptation is a key objective within EAGA's Strategic Plan and the roadmap will provide clear direction and momentum for adaptation across Melbourne's east.

1.4 Project Scope

The scope of the following regional risk assessment is limited to climate change risks to council assets, operations and areas of service delivery. Though the next phase of the project is likely to engage other regional stakeholders, EAGA determined this scope was most appropriate considering available resources.

The boundaries of the project scope accord with the EAGA council boundaries. Some climate change risks may be more local in scale or extend beyond the EAGA council boundaries. Nonetheless, the Alliance boundary provides a working governance framework to consider risks that go beyond council boundaries, or for which solutions are best dealt with at a regional scale.

1.5 Regional profile

EAGA's region covers approximately 3,000km², extending from densely populated urban areas in the west to less populated rural areas in the east. The region includes a range of features:

- 18% of Victoria's population (1,046,000 total)
- Future growth expected of 150,000 to 200,000 by the year 2031
- 34% of households considered low income
- 25% of residents are renters and 26% are born overseas
- 62% of businesses in the region are home-based
- 43% of industries (by employment) are in healthcare, professional services, retail and manufacturing sectors
- The industrial areas in Knox, Maroondah and Monash are a core strength of the region's economy and major contributor to Victoria's manufacturing sector

2. Project Methodology

2.1 Risk assessment approach

The project team adopted a standard risk assessment methodology for the project in line with the Australian and New Zealand risk management standard AS4360 and the Australian Greenhouse Office report "Climate Change Impacts: A guide for business and government" (2006). This approach was deemed most suitable as it is consistent with existing frameworks for risk assessment in the Local Government sector. Although there are other approaches that are being increasingly adopted in climate change adaptation planning, such as integrated vulnerability assessments, a standard risk assessment that leveraged on existing risk management frameworks was considered the most appropriate (and value added approach) given time and resource constraints of the project.

This approach also accommodated the fact that each Council is at a different stage with respect to adaptation planning and several of the Councils have already previously undertaken climate change risk assessments.

2.2 Risk Workshops

Risk workshops were held at the Cities of Knox, Monash, Maroondah and Stonnington. Each workshop (2.5 hours) engaged staff from all Councils service areas. This broad representation ensured that there was comprehensive identification of risks across the different areas of Council.

At the beginning of the workshops, the Adaptation Officer gave a short presentation on the project, and introduced the climate change scenario that is used for the risks assessment. An explanation was also given on the difference between climate change mitigation and climate adaptation. It was emphasized that it is unlikely that climate change poses many new risks to Council, but instead is likely to exacerbate existing risks.

It was necessary to present the climate scenario for the workshop in a simplified format. Figure 2.1 was presented to participants in the risk workshops and risks were identified and rated using this scenario to form conditional likelihoods and consequences.

Figure 2.1: Climate change scenario used in the risk workshops

Workshop participants were asked to introduce themselves and how they expected climate change to impact upon their work area. This preliminary discussion helped to highlight the diversity of climate change risks and focus thinking around the scope and purpose of the project. The point was made that climate change is often described by Councils as a discrete risk that is usually "owned" by sustainability teams to manage, and that the purpose of the workshop was to try and break out the climate risks into more detail to allow for broader ownership and mainstreaming of climate change in decision making.

Participants then worked in small groups to identify as many climate risks as possible in a brainstorming session. Each of the groups would spend time on a particular climate impact such as increasing temperatures and heatwaves, reduced water availability and droughts, increased severity of storm and flooding events, and increased bushfire risk. They were guided to describe the risk in terms of the climate impact responsible, the hazard it created and the consequence to council objectives.

Existing controls for each risk were then identified by participants and controls were evaluated for their perceived effectiveness. The risks were then taken away by the Adaptation Officer and rated using each of the Councils own risk management frameworks considering the data gathered on existing controls in the assessment.

A risk register was developed containing all of the Councils identified and rated risks. This register was then themed into Council area of responsibility, and shared with participants via email. Follow up interviews and questionnaires were conducted throughout the Councils to sense check the outputs.

Boorondara, Yarra Ranges and Whitehorse City Council had previously conducted climate change risk assessments and chose to adopt a different approach to the workshop process. For Yarra Ranges and Whitehorse, one hour workshops were held to evaluate progress on their respective adaptation plans. This enabled a sense checking of the relevance of the previous risk assessments conducted in 2009 and facilitated discussion around some of the lessons learnt and barriers since the 2009 process.

For Boorondara, as part of a broader review of their existing adaptation plan, a series of interviews with Council staff were conducted. These interviews focused on recent experiences of climate change events and a discussion about some key priority risks for the relevant Council area. These risks have also been incorporated into the regional risk register.

2.3 Stakeholder engagement

For each workshop, the EAGA Project Control Group worked with the Adaptation Officer to engage staff across various departments to attend the risk workshops. Broad representation was sought from across Council to reflect the diversity of risks posed to Council from climate change. Although each Councils have their own unique organisational structure, representation was sought from across the following key areas of service delivery:

- Community planning, services and health
- Planning and development
- Corporate services
- Infrastructure, assets and operations
- Sustainability and Environment
- Emergency management

A two page briefing note was prepared by the Adaptation Officer and distributed to workshop participants detailing the project and the purpose and agenda for the workshop.

2.4 Regional risk assessment

Data collection tools and workshops activities were designed to both inform an assessment of risk at the regional level and the development of discrete risk registers as each Council.

At the completion of the risk workshops, all identified risks were entered into a risk register, incorporating the previous risk assessments carried out in 2009 for Yarra Ranges and Whitehorse. Risks that were similar to one another were grouped together for each Council. The risks were rated based on each of the Council risk management frameworks, and taking into account the perceived effectiveness of existing controls. Each of the Council risk management frameworks can be found in Appendix 3.

The final risk register included a set of 329 risks. In order to make a more workable regional list of risks it was necessary to theme the risks according to key theme and climate variable.

Each of the risks was first nominated to fall within the responsibility of the following key themes:

- Community planning, services and health
- Planning and development
- Corporate services
- Infrastructure, assets and operations
- Sustainability and Environment
- Emergency management

Although there are many ways to categorise risks, themes were selected to represent the common organisational structures across the EAGA Councils.

The risks were themed by the climate impact variable. For example all risks that were borne from heatwaves were grouped together so as to be able to more easily identify similar and duplicated risks. The following climate impact variables were attributed to each risk:

- All climatic changes
- Increasing bushfire danger
- Increasing average temperatures
- More intense rainfall events
- Reduced water availability/drought
- More frequent and severe extreme weather events (general)
- Increasing frequency, severity and duration of heatwaves
- Increased wind velocity
- Increasing temperatures and drier conditions (combined)

A new regional risk description was used to cover similar or duplicated risks. The end result was a set of regional risks for each key theme. These were then re-rated using the likelihood and consequence tables adapted from the Australian Greenhouse Office "Guide for Business and Government" (2006), and cross checking with the ratings given by the Council assessments (See tables 2.1-2.3).

Table 2.1: Likelihood ratings (given the climate scenario)(AGO 2006)

Rating	Recurrent risks	Single events
Almost certain	Could occur several	More likely than not
	times per year	– Probability greater than 50%.
Likely	May arise about	As likely as not
	once per year	– 50/50 chance.
Possible	May arise once	Less likely than not but still appreciable
	in ten years	– Probability less than 50% but still quite high.
Unlikely	May arise once in ten	Unlikely but not negligible
	years to 25 years	– Probability low but noticeably greater than zero.
Rare	Unlikely during the	Negligible
	next 25 years	– Probability very small, close to zero.

SUCCESS CRITERIA						
	Rating	Public safety	Local economy & growth	Community & lifestyle	Environment & sustainability	Public administration
	Catastrophic	Large numbers of serious injuries or loss of lives	Regional decline leading to widespread business failure, loss of employment and hardship	The region would be seen as very unattractive, moribund and unable to support its community	Major widespread loss of environmental amenity and progressive irrecoverable environmental damage	Public administration would fall into decay and cease to be effective
	Major	Isolated instances of serious injuries or loss of lives	Regional stagnation such that businesses are unable to thrive and employment does not keep pace with population growth	Severe and widespread decline in services and quality of life within the community	Severe loss of environmental amenity and a danger of continuing environmental damage	Public administration would struggle to remain effective and would be seen to be in danger of failing completely
	Moderate	Small numbers of injuries	Significant general reduction in economic performance relative to current forecasts	General appreciable decline in services	Isolated but significant instances of environmental damage that might be reversed with intensive efforts	Public administration would be under severe pressure on several fronts
	Minor	Serious near misses or minor injuries	Individually significant but isolated areas of reduction in economic performance relative to current forecasts	Isolated but noticeable examples of decline in services	Minor instances of environmental damage that could be reversed	Isolated instances of public administration being under severe pressure
		Appearance of a threat	Minor shortfall relative to current	There would be minor areas in	No environmental damage	There would be minor instances

Table 2.2: Consequence scale for regional risks (AGO 2006)

Table 2.3: Priority risk ratings based on likelihood and consequence (AGO 2006)

maintain its

current services

but no actual forecasts which the region was unable to

			Consequences		
Likelihood	Insignificant	Minor	Moderate	Major	Catastrophic
Almost certain	Medium	Medium	High	Extreme	Extreme
Likely		Medium	High High	Extreme	
Possible		Medium	Medium	High	High
Unlikely			Medium	Medium	Medium
Rare					Medium

of public administration

being under

more than usual stress but it could be managed

3. Climate change in Melbourne's East

3.1 Overview

There is now overwhelming evidence that human induced climate change is occurring and is likely to have significant consequences for local governments. The latest Intergovernmental Panel on Climate Change report (2014) states that the warming of the world's climate is unequivocal and it is extremely likely (>95% confidence) that human activity is the dominant cause of this warming and not natural variability.

Similarly the recent State of the Climate Report (CSIRO & BOM 2014) states that Australia's climate has already warmed by 0.9°C since 1910 and that the frequency of extreme weather has changed, with more extreme heat and fewer cool extremes. For the south east of Australia, extreme fire weather has increased and the fire season lengthened, and rainfall has declined since 1990.

South east Australia can expect even more hotter and drier conditions into the future, with an increase in more extremely hot days and fewer extremely cool days. Average rainfall is expected to decline whilst the intensity of rainfall events is expected to increase when they do occur.

Society must respond to climate change in two ways; through *mitigation* actions whereby greenhouse gas emissions are reduced, and through *adaptation* actions that aim to reduce the impacts of climate change. Climate change adaptation is the focus of this risk assessment.

Box 1: Adaptation versus Mitigation

Responding to climate change requires both mitigation and adaptation responses:

- Mitigation; reducing the magnitude of climate change through emissions reductions and offsets
- Adaptation; actions to reduce the adverse consequences of climate change on human and natural systems

The focus of this project is around adaptation and is defined in the Victorian Climate Change Adaptation plan as:

"Adaptation is about increasing public and private resilience to climate risks through better decisions about managing our built and natural environment and taking advantage of opportunities."

Whilst there is scientific certainty that climate change is occurring, the magnitude, timing and distribution of climate impacts across the EAGA region through time is less certain. The Victorian Climate Change Adaptation Plan recognises that making decisions in the context of this uncertainty is a key challenge for local governments undertaking adaptation planning (DSE 2013). However, this uncertainty should not be a basis for inaction. Therefore, climate scenarios are used in the risk assessment process, which are based upon the best available scientific projections.

3.2 Climate change projections for the EAGA region

The climate change scenario used for the risk workshops and as the basis of this regional risk assessment is based upon projections prepared by the CSIRO for the EAGA region. This was updated in 2013 as part of the "Bushland and Biodiversity Management in a Changing Climate" report (EAGA 2013b & CSIRO 2013).

It is necessary to consider uncertainty when making climate projections for any given location. Furthermore, it is unlikely that this level of uncertainty will be significantly reduced through time. Major factors contributing to uncertainty in producing climate projections include:

- 1. Lack of complete knowledge of how the global climate system works
- 2. Natural variability in the global climate system
- 3. Predicting human behaviour and future greenhouse gas emissions

In light of this uncertainty, climate projections were developed by CSIRO based on the Intergovernmental Panel on Climate Change greenhouse gas scenarios (CSIRO 2013). In this study "Most Likely" and "Worst Case" climate futures were considered for the region. The most likely climate future is defined as that represented by the greatest number of models. The worst case is defined as the climate future that would have the greatest impact on ecosystems in the EAGA region i.e. greatest increase in temperature and/or greatest drying. The range of both of these scenarios were utilised in this report. There is little difference between scenarios up to 2030, and the greater differences occur beyond 2055 depending upon future global greenhouse gas emissions (see figure 3.1).

Similarly, it is worth noting that we are currently tracking on the higher emissions scenario which will lock in significant increases in global temperatures by 2100, well in excess of the 2 degrees Celsius that is considered "adaptable". Table 3.1 shows the climate change projections for the Port Phillip and Westernport Region of Victoria for 2030 based on 1980-99 averages. This table shows that the observed changes for 2004-2013 to average and extreme temperatures and winter and summer and rainfall have already exceeded the projections for 2030. This demonstrates that climate change is an immediate threat, not just a future threat and that previous projections have been consistently conservative.

TABLE 3.1 2008 Climate change projections for Melbourne region compared with currentobservations (1980-99 & 2030 projections from DSE 2008 and 2004-13 observed extracted from CSIRO &BOM 2014)

Climate variable	1980-99	2030	2004-13 observed
Ann mean temp	15.6°C	0.9°C (0.6 to 1.2°C)	0.9°C
Summer rainfall	155 mm	-1% (-11 to +9%)	+4%
Winter rainfall	153 mm	-4% (-10 to +2%)	-12%
Days over 35C	9	11 (10 to 13)	12

Figure 3.1 Global emissions and warming scenarios (Extracted from Meinshausen et al. 2009)

3.3 Timeframes

Climate projections were calculated for the EAGA region by CSIRO for the 30 year climatology centered on outlook periods 2030, 2050 and 2070. Values provided are relative to a 30 year period

centered on 1990 (1975 – 2004). The changes summarised in table 3.1 should be interpreted as an overview of projected changes in aspects of the climate of the EAGA region as provided in "Climate Futures for Eastern Melbourne" (CSIRO 2013).

The timeframes of the risk assessment reflect the timeframes of the CSIRO projections. However, it was considered that 2070 is too long term for most council planning decisions. A review of council climate risk assessments (MAV 2010) found that 2070 was not that realistic for the purposes of adaptation planning and this supported the EAGA decision to focus on 2030 and 2055.

TABLE 3.2: Summary of most likely projected future changes

Temperature

- Average temperatures will increase in all seasons, most significantly in summer and least in
- winter.
- The frequency of hot days will increase.
- The frequency of warm nights will increase in all seasons, but most in summer.

Precipitation

- With higher emissions into the future there are likely to be decreases in average rainfall in all seasons.
- The majority of the models project greatest percentage decreases in average rainfall to occur in spring.
- There will be increases in evaporation across all seasons with most models indicating the largest increases will be in winter.
- Projected decreased rainfall and increased evapotranspiration is likely to lead to decreased average streamflow.
- The frequency of dry days will increase.

Relative humidity

- By 2030 a decrease in annual average relative humidity of around 0.8% (+0.2 to -1.8%) is likely.
- By 2050 decreases in annual average relative humidity of around 0.5% (0.2 to 1.0%) and around
- 2.7% (-2.0 to -3.6%) are likely under low and high emissions scenarios respectively.
- By 2070 decreases in annual average relative humidity of around 2.7% and around 4.1% (-1.8 to -5.2%) are likely under low and high emissions scenarios respectively.

Fire Weather

- The frequency of weather conditions conducive to high forest fire risk will increase.
- The fire season will start earlier and end later in the year.

Extreme Wind Speeds

• The majority of models indicate extreme wind-speeds could decrease in spring, summer and autumn and increase in winter.

Solar Radiation

- By 2030 an increase in annual average solar radiation of around 0.8% (0.1 to 1.6%) is likely.
- By 2050 increases in annual average solar radiation of around 0.9% (-0.1 to 1.9%) and around 2.7% (0.6 to 4.8%) are likely under low and high emissions scenarios respectively.
- By 2070 increases in annual average solar radiation of around 0.6% (0.4 to 2.5%) and around 3.1% (0.5 to 5.4%) are likely under low and high emissions scenarios respectively

4. Priority Regional Risks

The following section summarises regional risks facing the EAGA Councils from climate change. Risks have been grouped into the following key council service areas:

- Community planning, services and health
- Planning and development
- Corporate services
- Infrastructure, assets and operations
- Sustainability and Environmental Management
- Emergency management and disaster preparedness

Although there are many ways to categorise risks, themes were selected to best represent the most common organisational structures across the EAGA Councils.

A full risk register for each council is attached as an Appendix to this report. The regional risks included in this section are of high and extreme ratings only.

Many of the risks highlighted in this section are risks that Councils are currently facing, with climate change acting as a multiplier of these risks. From the follow up interviews with workshop participants, reflections on recent extreme weather events highlighted the existing vulnerability of Council's to climate change. Most participants acknowledged that any increase in the severity, duration or frequency of these events would severely compromise Council's strategic goals.

One of the key limitations of a risk assessment is that it is difficult to capture the consequences of multiple impacts occurring in similar time and space. Many climate change impacts often occur at the same time, such as heatwaves and bushfires, and so risks taken in isolation may not capture the cumulative impact of overlapping risks (See Box 2). Some of the risks have been described in a way that captures the multiple climate change variables. Although this does not capture the breadth of cumulative impacts in this risk assessment, these considerations will be brought forward into the adaptation planning phase with the use of scenario planning.

Box 2: Impacts of the January 2009 Heatwave and Black Saturday Bushfires in Melbourne's East

The January heat wave of 2009 across Melbourne was of unprecedented intensity and duration with maximum temperatures 12-15 degrees Celsius above normal, and 3 consecutive days of temperatures above 43 degrees Celsius. This event that led to the tragic Black Saturday Bushfires demonstrates the risks to Council assets, operations and service delivery that can arise from multiple climatic stressors occurring at once.

Many air conditioning units failed from overloading across EAGA Council buildings. Further brownouts and blackouts occurred due to peak electricity demand across the municipalities leading to damage to critical council assets and plant equipment. Many staff left work early due to high temperatures in the office and the fact that many office buildings demonstrated inadequate passive design qualities. Heat island effects that exacerbated heat wave conditions were observed caused by a lack of green infrastructure and increasing urbanisation. This was contributed to by an overall decline in street tree canopy during the prolonged drought conditions that preceded the heat wave events. In fact the hotter drier conditions led to a longer term decline in the health and appearance of Council parks and reserves, leading to a decline in amenity and loss of biodiversity.

Across the region, health support services were severely strained from the increased demand associated with increased heat related conditions. Across the state the week experienced an additional 374 excess deaths over what would be expected, with reportable deaths in those over 65 years of age doubling.

Transport and energy disruptions were frequent. On the 30th January train cancellations peaked with 24% of trains not running, leading to further restrictions on regional mobility for council staff and community to access and deliver critical assets and services. The economic impacts were widespread for the region, due to the costs of direct damage to infrastructure, the loss of productivity and loss of revenue for small businesses. A decline in strip shopping economic activity was evident, with people preferring the air conditioned refuges of larger shopping malls. CSIRO estimated that for the 28-30th January the south eastern cities of Australia lost an estimated \$800 million due to the heat wave.

Due to the high fire danger during the week urban councils experienced temporary population increases with people migrating away from areas of high fire risk. Council leisure centres were strained due to the increase in demand for air conditioned and shaded refuges. This created significant safety and service delivery issues for staff and the community.

The Black Saturday bushfires placed serious strain on regional emergency services. Councils in neighbouring regions to the fire affected area contributed support staff and resources leading to further disruptions to business continuity. The bushfires created widespread devastation to communities and infrastructure with 173 deaths and the destruction of over 3,500 structures.

Climate change over the next 30–60 years will make the probability of such events in Melbourne's East more likely, and lead to more frequent, longer lasting heatwaves, more extreme bushfire danger and more prolonged drought conditions. The January 2009 heat wave and Black Saturday bushfires demonstrated the importance of proactive planning for climate change, and the risk of relying on reactive response measures only. Many positive adaptation measures have since occurred such as the development of Municipal Heatwave Plans and significant structural changes to emergency management. However there are still many challenges that need to be addressed if the region is to increase its resilience to the impacts of climate change in the coming decades.

(Adapted from research contained in QUT 2010 and EAGA Council interviews and questionnaires)

The following risks have been described in terms of the impacts of climate change on council operations, assets and areas of service delivery. In particular, it attempts to phrase the risks according to the following roles and responsibilities of local government as set out in the COAG

Select Council on Climate Change "Roles and Responsibilities for Climate Change Adaptation" (2012b):

- Administer relevant state and territory and/or Commonwealth legislation to promote adaptation as required, including the application of relevant codes, such as the Building Code of Australia
- Manage risks and impacts to public assets owned and managed by local governments
- Manage risks and impacts to local government service delivery
- Collaborate across Councils and with state and territory governments to manage risks of regional climate change impacts
- Ensure policies and regulations under their jurisdiction, including local planning and development regulations, incorporate climate change considerations and are consistent with State and Commonwealth Government adaptation approaches
- Facilitate building resilience and adaptive capacity in the local community, including through providing information about relevant climate change risks
- Work in partnership with the community, locally-based and relevant non-government organisations, business and other key stakeholders to manage the risks and impacts associated with climate change
- Contribute appropriate resources to prepare, prevent, respond and recover from detrimental climatic impacts.

A formal Memorandum of Understanding is still being developed between the Victorian State Government and Local Government to gain further clarity on these roles and responsibilities, as part of the Victorian Climate Change Adaptation Plan (DSE 2013). However, the above provides a useful working framework for considering risks and understanding roles and responsibilities between the different levels of government.

The following risk descriptions have been phrased in the following way:

In most cases, the risk consequence is described as the most significant consequence and does not describe every possible consequence to council. Although the risks have been identified from the workshops they are supported by existing literature where possible.

4.1 Community Planning, Services and Health

This theme covers areas of Council such as community planning and development, leisure facilities and libraries, community health and wellbeing, aged and disability services, multicultural and Culturally and Linguistically Diverse (CALD) community services, youth and family, recreation, economic development, and Home and Community Care (HACC) services.

Summary of key risks

Climate change exacerbates many existing risks faced by the Community Planning, Services and Health service areas of EAGA Councils. Across the region climate change is likely to:

- Increase demand on council support services during and after extreme weather events
- Increase demand on council facilities, particularly air-conditioned and shaded refuges during heatwaves such as libraries and swimming pools
- Reduce Councils ability to service vulnerable members of community, such as aged and disability, low income households and people who rely on frequent medical services
- Potential for significant impacts on mental and physical wellbeing of community due to reduced participation in sport, reduced use of open space, reduced air quality and reduced amenity, increased exposure to water and food borne disease and toxins and increased anxiety from climate change events
- Reduce regional food and water security
- Reduced regional economic development from financial and business interruption impacts of increasing extreme weather events, reduced access to work, increased costs of food, water and energy
- Reduced economic activity in strip shopping centres (or "precincts") in favour of protected and air conditioned shopping centres

Supporting key documentation/literature

The following reports/plans support the risks identified in the workshop and their associated ratings:

- Municipal Public Health and Wellbeing Plan: Having regard to Climate Change (DOH 2012)
- The critical decade: climate change and health (Climate Commission 2011)
- Scoping of climate change impacts on population health and vulnerabilities (DOH 2013)
- Victorian Climate Change Adaptation Plan (DSE 2011)
- Climate change adaptation actions for local government (DEWR 2007)
- Economic impacts of Climate Change (CEDA 2014)

Key relevant Council plans/strategies

Municipal Health and Wellbeing Plans, Municipal Heatwave Plans, Economic Development Strategies, Municipal Emergency Management Plans.

Risk ID	Regional Risk Description	Risk Rating		
		Current	2030	2055
CSR1	Service delivery failure in extreme weather	High	High	Extreme
	Increased demand on Council recovery and support services from more frequent and severe extreme weather events leads to increased health risks to vulnerable members of community and widespread service delivery failure			
CSR2	Increased demand on Council facilities during heatwaves	High	High	Extreme
	Higher demand on Council air conditioned and shaded facilities (swimming pools/libraries) from increasing frequency, severity and duration of heatwaves leads to reduced public safety			
CSR3	Increased energy disruptions during heatwaves threaten public health	Medium	High	High
	More frequent blackout/brownouts from increased electricity demand during heatwaves leads to health and safety issues for low income households, aged, disabled, children and those with chronic health conditions			
CSR4	More severe storms reduce mobility and access to critical services	Medium	High	High
	More disruptions to transport and communications infrastructure from increased intensity of rainfall events and severe storms reduce mobility and access to critical goods and services for vulnerable members of community			
CSR5	Increasing costs of water on economy	Medium	High	High
	Increasing costs of water from reduced water availability leads to local economic impacts on water reliant businesses (eg.nurseries, carwashes) and community			
CSR6	Reduced wellbeing from sportsground deterioration	Medium	Medium	High
	Hardening and deterioration of sporting grounds/reserves as a result of decreased rainfall leading to reduced participation and increased social isolation in community			
CSR7	Reduced air quality from dust storms, bushfires and planned burning activities	Medium	Medium	High
	Reduced air quality from dust storms and bushfires as a result of hotter drier conditions leading to increase in public health			

TABLE 4.1 Community Planning, Services and Health Regional Risks

	issues such as respiratory illnesses and Council sees an increase in complaints and loss of reputation			
CSR8	Increased disease transmission	Medium	Medium	High
	Contaminated water supplies and reduced food hygiene from hotter and drier conditions leads to increase in disease transmission and public health issues particularly affecting low- income households, children and older people			
CSR9	Heatwaves reduce mental wellbeing	Medium	Medium	High
	Reduced thermal comfort in public spaces from increasing number of hot days leads to detrimental impact on community and staff mental wellbeing			
CSR10	Slowing of regional economy	Medium	Medium	High
	Greater SME failure or damage due to more frequent business disruptions and financial impacts from more severe extreme weather events leads to regional unemployment and reduced economic development			
CSR11	Reduced food security	Medium	Medium	High
	Reduced food security from reduced water availability leads to broad economic and social impacts on community			
CSR12	Reduced retail economic activity in strip shopping precincts	Medium	Medium	High
	Reduced economic activity in strip shopping precincts in favour of air conditioned and protected shopping centres from increasing heatwaves and extreme weather events lead to regional economic and social impacts			

4.2 Planning and Development

The planning and development sector includes strategic planning, statutory planning and development approvals processes. It also covers areas of council such as open space planning and urban design, local laws and building compliance, and major projects. The divisions of strategic and statutory planning differ between Councils, however for the purpose of this report all aspects of planning and urban design are considered together.

Summary of key risks

This theme contains significant opportunities to proactively plan for climate change, particularly strategic planning and urban design. Whilst many other responses to climate change will be reactive and behavioral, it is often this sector that offers advice on longer term decisions such as ESD principles, water sensitive urban design, major projects etc. However, often local government decision making with regards to planning and development approvals is steered by state government legislation. As such some of the following risks have shared responsibilities between State and local government.

The key risks faced by this theme are:

- Strategic failure to adequately plan for climate change impacts into the future
- Current council building stock not designed for projected climate change
- Urban design and land use planning exacerbates climate change impacts such as the 'heat island' effect and flooding impacts
- Resource strain and development approvals slow from more stringent climate change planning laws
- Inadequate water planning exacerbates flooding and requires new infrastructure
- Lack of understanding and guidance for considering climate change impacts by Council planning staff

Supporting key documentation/literature

The following reports/plans support the risks identified in the workshop and their associated ratings:

- Climate Change Vulnerability Assessment of Selected Council Buildings (Whitehorse City Council 2012)
- Infrastructure and Climate Change Risk Assessment for Victoria (CSIRO, Maunsell & Fox 2007)
- Victorian Climate Change Adaptation Plan (DSE 2011)
- Planning policy and practice: the right mechanism to tackle climate change? (Maddocks 2010)
- Climate change adaptation actions for local government (DEWR 2007)
- Responding to the urban heat island: a policy and institutional analysis (Bosomworth et al. 2013)
- Developing the Metropolitan Whole of Water Cycle Strategic Framework Draft Discussion Paper 2014-2024 (OLV 2014 draft)

• Ensuring Australia's urban water supplies under climate change (NCCCARF 2013c)

Relevant Council plans/strategies

Municipal Strategic Statements, planning schemes, ESD policies, National Construction Code, Open Space strategies.

TABLE 4.2: Planning and Development Regional Risks

Risk	Regional Risk Description	Risk Rating		
ID		Current	2030	2055
	Inadequate building design			
	Current building design standards not adequate for projected			
	climate conditions leads to increased costs to local Councils for			Extrem
PR1	maintenance, retrofitting and replacement	Medium	High	е
	Strategic failure to plan for climate change			
	Council fails to adequately plan for climate change and enact			
	the precautionary principle leading to loss of reputation,			Extrem
PR2	liability issues and increased financial costs	Medium	High	е
	Urbanisation and heat island effect			
	Increasing densification and harder surfaces exacerbate heat			
	island effect during heatwaves leading to reduced physical and			
PR3	mental wellbeing and loss of reputation and amenity	Medium	High	High
	Land use planning fails to adequately consider climate change			
	Failure to plan for climate change in land use planning			
	framework exacerbates climate change impacts leading to			
	widespread damage to public and private assets, reduced			
PR4	public safety, liability and insurance issues	Medium	High	High
	More stringent planning laws			
	More stringent building and planning requirements due to			
	increased frequency and severity of extreme events leads to			
	greater strain on statutory planning resources and			
PR5	development approval times	Medium	Medium	High
	Inadequate flood infrastructure			
	Overflowing of drainage systems and inadequate flood			
	infrastructure from increased intensity rainfall events leads to			
PR6	increased damage to council assets and reduced public safety	Medium	Medium	High
	Costs of new water capture infrastructure			
	Increased pressure to design new water capture and reuse			
	infrastructure due to reduced water availability leads to			
PR7	increased capital costs to council	Low	Medium	High
	Inadequate capacity to understand impacts of climate change			
	Lack of understanding of climate change impacts by Council			
	staff and lack of policies or guidance leads to lack of			
	consideration and information integration of climate change in			
PR8	development approvals	Medium	Medium	High

4.3 Corporate

The corporate theme includes areas such as finance and governance, human resources, risk management and OH&S, IT, corporate communications and customer service and corporate planning. This area of Council is likely to face the consequences of many realised risks across other areas of Council, that lead to reduced service delivery and disruption of business continuity, and financial and reputational issues.

Summary of key risks

The key risks faced by this theme are:

- Reduced safety and wellbeing for staff and community
- Increased liability issues and insurance premiums
- Cumulative economic impacts of climate change on financial planning
- Loss of business continuity and service delivery from increasing climate events
- Risk of loss of reputation from loss of amenity, service delivery failure and clean up delays
- Reduced human resources and productivity from absenteeism and decline in volunteerism
- Lack of council staff knowledge and capacity to plan for climate change

Supporting key documentation/literature

The following reports/plans support the risks identified in the workshop and their associated ratings:

- Responding to litigation risk from climate change informed decision making (DLA Piper 2014)
- Challenges of adaptation for local governments (NCCCARF 2014)
- Local Council Risk of Liability in the Face of Climate Change Resolving Uncertainties (Baker & Mckenzie 2011)
- Victorian Climate Change Adaptation Plan (DSE 2011)
- Western Alliance for Greenhouse Action Climate Change Risk Assessment (2011)
- Protecting Human Health and safety during severe and extreme heat events (Price Waterhouse Coopers 2011)

Relevant Council plans/strategies

Council plans, long term financial plans, annual budgets, risk registers.

TABLE 4.3: Corporate Regional Risks

			Risk Rating	
Risk ID	Regional Risk Description	Now	2030	2055
	Reduced safety for staff and community			
	Increase in severity, frequency and extent of extreme weather			
	events from climate change leads to increased injury or death			Extrem
CoR1	of staff and community	Medium	High	е
	Reduced council service delivery			
	Increased resources required to manage and mitigate			
	increasing frequency of climate events reduce other areas of			Extrem
CoR2	council service delivery	Medium	High	е
	Increases in insurance premiums			
	Change to insurance premiums due to increasing frequency			
	and severity of extreme weather events leads to increased			
CoR3	costs to Council	Medium	High	High
	Cumulative costs of CC to financial planning			
	Failure of long term financial plans and annual budgets due to			
	cumulative economic impact of climate change leads to			
	widespread council service delivery failure and failure to meet			
CoR4	core objectives	Medium	High	High
	Inadequate staff skills and capacity			
	Lack of knowledge of climate change adaptation amongst			
	Council staff across departments leads to reduced capacity of			
	Council to adequately respond leading to loss of reputation			
CoR5	and planning failure	Medium	High	High
	Reduced volunteerism during heatwaves			
	Inability to retain volunteer staff due to increasing heatwave			
CoR6	events leads to impacts on continuity of service delivery	Medium	High	High
	Increased liability issues			
	Increased rate of claims and liability issues from damage to			
	property and people from extreme storm events and bushfires			
	leads to strain on council resources and unexpected financial			
CoR7	costs	Medium	High	High
	Increased energy demand and costs of cooling			
	Increased energy demands of maintaining thermal comfort			
	levels for staff due to increasing frequency and severity of			
C - D0	heatwaves leads to increased costs of cooling and maintaining			
COR8	buildings	Medium	High	High
	Loss of business continuity from power outage			
	Increased rate of power outages due to more frequent and			
	protonged extreme weather events such as neatwaves and			
CoPO	storms leads to loss of business continuity and reduced service	Madium	Llieb	Link
CORS	Transport dicruptions roduce convice delivery	Mealum	rign	rign
	Transport disruptions due to extreme weather leads to			
CoP10	raduced staff attendance and inhibited service delivery	Modium	Modium	High
LOKIO	reduced stan attendance and infibiled service delivery	Mealum	Mealum	nign

	Increased OH&S risk to outdoor staff			
	Increased OH&S issues to outdoor council staff from more			
	frequent and severe heatwave events (heatstroke, sunburn			
CoR11	etc.)	Medium	Medium	High
	Reduced mental wellbeing of staff			
	Reduced mental wellbeing of staff due to increase in extreme			
	weather events and higher temperatures leads to greater			
CoR12	absenteeism and reduced productivity	Medium	Medium	High
	OH&S policy conflicts with service delivery			
	OH&S policy of restricting outdoor workers in extreme heat			
	days reduce Councils ability to service vulnerable members of			
	the community leading to loss of reputation and reduced			
CoR13	public safety	Medium	Medium	High
	Clean up delays			
	Clean up delays and backlogs from more extreme weather			
	events lead to loss of reputation, community outrage and			
CoR14	council service delivery failure	Low	Medium	High
	Increased demand on customer service calls			
	Increased demand on Council's after hours service calls for			
	clean up and recovery work from more extreme weather			
	events leads to loss of business continuity and impacts on			
CoR15	service delivery	Low	Medium	High

4.4 Infrastructure and Assets

The infrastructure and assets theme includes buildings and property services, water management and drainage maintenance, capital works, road and footpath maintenance, waste management and recycling, parks/reserves and sporting grounds, and operations.

Summary of key risks

This theme contains risks associated with asset and infrastructure management which are some of the most common and arguably one of the greatest challenges that local governments face from climate change in terms of financial sustainability and community expectations. Similarly maintenance of sporting grounds and open space will be impacted upon by climate change and these risks cross over a number of other council key themes. The key risks faced by this theme are:

- Reduced asset lifespan and increased maintenance of council assets
- Increased damage to underground infrastructure such as drains, pipes, building foundations
- Reduced thermal comfort of buildings
- Increased costs and resources for managing sporting grounds and reserves
- Higher rates of street tree mortality
- Increased flood and bushfire damage to critical council assets
- Lack of available fresh water and water for irrigation

Supporting key documentation/literature

The following reports/plans support the risks identified in the workshop and their associated ratings:

- Climate Change Vulnerability Assessment of Selected Council Buildings (Whitehorse City Council 2012)
- Infrastructure and Climate Change Risk Assessment for Victoria (CSIRO, Maunsell & Fox 2007)
- Victorian Climate Change Adaptation Plan (DSE 2011)
- Western Alliance for Greenhouse Action Climate Change Risk Assessment (2011)
- Climate Change Adaptation Programme (SALGA 2012)
- Quantifying the costs of climate change impacts on local government assets (SALGA 2012b)
- Climate proofing Australia's infrastructure (NCCCARF 2013)

Relevant Council plans/strategies

Asset management strategies, water management plans, open space strategies, road management plans.

 TABLE 4.4: Infrastructure and assets regional risks

Risk		Risk Rating		5
ID	Regional Risk Description	Now	2030	2055
	Bushfire damage to assets			
	Increased loss or damage to buildings due to increased bushfire			
	activity leads to more financial costs of replacing, repairing and			
InR1	maintaining building and plant machinery assets	High	High	Extreme
	Increased flood damage			
	Increased flood damage to Council assets such as roads, paths,			
	drains and buildings from increased intensity rainfall events leads			
	to increased maintenance and replacement costs and more			
InR2	frequent inspections	Medium	High	Extreme
	Reduced asset lifespan			
	Reduced lifespan of Council assets such as buildings, roads,			
	footpaths from hotter drier conditions and more extreme			
	weather events leads to increased replacement costs and more			
InR3	frequent inspections	Medium	High	Extreme
	Damage to underground infrastructure from soil movement			
	Accelerated deterioration of underground infrastructure such as			
	drains, pipes and building foundations due to decreased soil			
	moisture combined with extreme rainfall leads to loss of Council			
InR5	service ability, reduced public safety and asset damage	Medium	High	High
	Machine and plant failure			
	Increased machine and plant failures due to increasing duration,			
	frequency and intensity of heatwaves leading to critical Council			
InR6	service delivery disruptions and higher maintenance costs	Medium	High	High
	Damage to transport infrastructure			
	Increased deterioration of transport infrastructure such as roads,			
	bicycle networks, and paths from hotter drier conditions and			
	more extreme weather leads to higher maintenance and			
	replacement costs and reduced mobility and loss of Council			
InR7	reputation	Medium	High	High
	Damage from power outages			
	More frequent brown and blackouts from increased energy			
	demand during more frequent heatwayes leads to damaged			
INK8	assets and increased costs of repair and replacement	Medium	High	High
	Increasing costs of irrigation			
	Greater demand for irrigation for parks, reserves, sporting			
	grounds and open spaces due to reduced water availability leads	Maria	March	1.12.1
INR9	to increased costs	Medium	Medium	High
	Increased costs of maintenance of open space			
	wore management interventions of open spaces such as sports			
	drier conditions loads to increased management costs and strain			
InR10	on Council resources	Modium	High	High
1 111/10	וויייייייייייייייייייייייייייייייייייי	medium	TIUT	TIUI

	Reduced use of open spaces Changes to the health, appearance and use of sporting grounds, parks and reserves and open spaces due to hotter drier conditions and more extreme events leads to reduced amenity, reduced public safety and wellbeing and loss of council			
InR12	reputation	Medium	Medium	High
	Damage from fallen trees			
	Damage from falling trees on council or private land due to			
	increase in extreme wind and storm events, and drier hotter			
InR13	conditions leads to reduced public safety and liability issues	Medium	Medium	High
	Increased costs for water management			
	Increased need for flushing stormwater drains, clearing buildup			
	of litter in drains, treating stormwater and importing water due			
	to prolonged drought conditions leads to increased costs and			
InR15	management efforts	Medium	Medium	High
	Higher street tree mortality			
	Increase in street tree mortality from hotter drier conditions			
	leads to reduced amenity and increased heat island effect and			
InR19	more regular maintenance and replacement	Medium	High	High

4.5 Sustainability and Environment

The sustainability and environment theme includes areas such as biodiversity and weed management, sustainability, and environmental health. Many EAGA Councils have different divisions of these functions with some sustainability teams sitting within integrated planning teams and environmental management sitting within infrastructure and operations. As such there is some overlap between the responsibilities of these themes that should be considered.

Summary of key risks

The key risks faced by this theme are:

- Loss of biodiversity from changing climate and lack of knowledge of appropriate responses
- Loss of amenity and green areas and need for more intervention and maintenance
- Reduced air and water quality from increased bushfires, floods and droughts
- Increased fire management required to offset increased bushfire risk
- Reduced use of sustainable transport options during extreme weather
- Failure to meet energy consumption and greenhouse gas emissions targets due to increased cooling demands

Supporting key documentation/literature

The following reports/plans support the risks identified in the workshop and their associated ratings:

- Bushland and Urban Biodiversity in a Changing Environment (EAGA 2013)
- Victorian Climate Change Adaptation Plan (DSE 2011)
- Climate change and potential distribution of weeds (DPI 2008)
- Climate Change in Port Phillip and Western Port (DSE 2008)
- Climate Change Victoria: The Science, Our People and the State of Play (CES 2012)
- Adapting ecosystems to climate change (NCCCARF 2013d)

Relevant Council plans/strategies

Sustainability strategies, greenhouse action plans, biodiversity and open space strategies.

TABLE 4.5: Sustainability and Environment Regional Risks

			Risk Rating	5
Risk ID	Regional Risk Description	Now	2055	
	Loss of biodiversity from changing fire regimes			
	Changing fire regimes from hotter drier conditions leads to decline			
EnR1	and loss of biodiversity and increased management efforts	Medium	High	Extreme
	Loss of biodiversity from hotter drier conditions			
	Hotter drier conditions lead to loss of biodiversity and increased			
EnR2	environmental management costs	Medium	High	Extreme
	Public to private land bushfire risk			
	Greater management of interface between Council reserves and			
	private land due to increasing fire risk requires more resources and			
EnR3	management efforts and potential loss of amenity	Medium	High	High
	Pollution from flooding events			
	Increase in pollution entering waterways and sewer inundation			
	following more intense rainfall events leads to public health issues			
EnR4	and reduced amenity	Medium	High	High
	Failure to meet energy and GHG targets			
	Increased demand on electricity consumption from air conditioner			
	use due to hotter and drier conditions leads to leading to			
EnR5	greenhouse targets not being met	Medium	High	High
	Erosion from intense rainfall			
	Greater erosion of creek banks, parks, drains due to increased			
	intensity of rainfall events leads to reduced public safety and			
EnR6	reduced water quality	Medium	High	High
	Loss of amenity and green areas			
	Hotter drier conditions and more extreme weather leads to loss of			
	environmental amenity and aesthetic value of recreational parks,			
EnR7	bushlands and natural areas	Low	Medium	High
	Contaminated water supplies from bushfire			
	Contaminated water supplies due to increasing bushfire activity			
	leads to public health issues and increased Council resource			
EnR8	demand for water treatment and supply	Low	Medium	High
	Biodiversity loss from fire management			
	Requirement for larger fire breaks and more burning off due to			
	increased bushfire risk leads to impacts on biodiversity and			
EnR9	reduced air quality	Medium	Medium	High
	Loss of environmental and cultural heritage			
	Increased maintenance, damage and loss to environmental and			
EnR10	cultural heritage due to climatic events.	Medium	Medium	High
	Increase in weeds, pest animals and parasites			
	Increased temperatures causes a loss of vegetation leading to an			
EnR11	infestation of pest animals, parasites and weeds	Medium	Medium	High

	Reduced water quality			
	Reduced average rainfall leads to less flushing events, drying out of			
	creek beds, and algal blooms in stagnant water bodies leading to			
EnR12	public health issues and reduced amenity and habitat	Medium	Medium	High
	Lack of knowledge of biodiversity response to a changing climate			
	Lack of understanding of local flora and fauna species response to			
	climate change leads to failure to proactively manage for			
EnR13	biodiversity under a changing climate	High	High	Medium
	Reduced use of sustainable transport in extreme weather			
	Greater use of cars over cycling, walking and public transport due			
	to an increase in the frequency of extreme weather and number of			
	hot days leads to reduced success of active living programs and			
EnR14	increase in GHG emissions	Medium	High	High

4.6 Emergency Management

The emergency management theme is the specific area of Council that deals with emergency preparedness, response and recovery. These units are often working closely with other regional actors such as the SES, the CFA, state government agencies such as Department of Environment and Primary Industries, Department of Justice, Department of Health and Melbourne Water. There is a lot of overlap between the areas of disaster risk reduction and climate change adaptation, however the focus of this report is on risks that climate change will exacerbate, more than existing emergency management risks.

Summary of key risks

The key risks faced by this theme are:

- Increased demand on Council emergency facilities and recovery resources
- Inadequate capacity of staff and plants to deal with more widespread regional events
- Recovery efforts impacted by multiple overlapping events occurring at once and longer standby periods
- More frequent, severe and widespread extreme events leads to greater loss of life
- Failure to communicate adequately to CALD and other vulnerable members of the community

Supporting key documentation/literature

The following reports/plans support the risks identified in the workshop and their associated ratings:

- Emergency risks in Victoria (DOJ 2014)
- Community engagement in the emergency management sector: Developing resilience to climate change (OESC 2012)
- State of the Climate (CSIRO and BOM 2014)
- Climate Change in Port Phillip and Western Port (DSE 2008)
- Climate Change Victoria: The Science, Our People and the State of Play (CES 2012)
- Emergency Management and Climate Change (NCCCARF Policy guidance brief no.10)
- Victorian Bushfire Risk Profiles: A foundational framework for strategic bushfire risk assessment (DEPI 2013)

Relevant Council plans/strategies

Municipal Emergency Management Plans, Heatwave plans, Health and Wellbeing plans, emergency communications strategies/plans.

TABLE 4.6: Emergency	Management Reg	ional Risks
-----------------------------	-----------------------	-------------

			Risk Rating	5
Risk ID	Regional Risk Description	Now	2030	2055
	Inadequate Council emergency facilities			
	Higher demand on Council emergency and recovery facilities to			
	cope with increasing frequency, severity and duration of extreme			
	weather events leads to reduced public safety and service			
EMR1	delivery failure	Medium	High	Extreme
	Loss of life from more extreme bushfires			
	Increase in the severity, frequency and extent of wildfires in the			
	region leads to greater loss of lives and reduced public and staff			
EMR2	safety	High	High	High
	Failure to communicate in extreme weather			
	Lack of adequate communication to community including CALD			
	community during heatwave events that do not activate			
	emergency management protocols leads to reduced public safety			
EMR3	and loss of reputation	Medium	High	High
	Recovery hindered by multiple overlapping events			
	Multiple overlapping events such as bushfires, extreme rainfall			
	and heatwaves impact emergency management recovery efforts			
	including staff accessibility to resources/equipment, recruitment			
EMR5	& training	Medium	Medium	High
	Inadequate capacity of staff/plant equipment			
	Inadequate capacity of staff/plant equipment to deal with			
	increasing frequency, severity and extent of extreme weather			
EMR6	events	Medium	Medium	High
	Loss of services hinder EM response			
	Loss of services such as electricity, water and			
	telecommunications due to more extreme and widespread			
51407	emergency events compromises Council's ability to respond to			
EMIR7	community needs	Medium	Medium	High
	Power outages increase demand on services			
	Power outages in municipality from storms, heatwaves and			
	bushfire events increase demand on Council emergency services			
EIVIR8	and recovery	Medium	Medium	High
	Snared contractors unable to respond to widespread events			
	inadequate pool of EW response contractors shared between			
	avtrome events lead to loss of council ability to respond to			
ENADO	excreme events lead to loss of council ability to respond to	Modium	Madium	High
LIVING	energency events	Mealum	Mealum	nign

5. Council preparedness to deal with Climate Change

5.1 Climate change and strategic risks across EAGA Councils

Prior to the workshops, the Adaptation Officer met with EAGA council representatives and risk managers to discuss existing treatment of climate change in risk management frameworks. Most of the Councils operate with a form of a higher level strategic risk register, and operational risk registers at different levels.

The following table highlights the number of Councils with climate change as a specific strategic risk at the time of writing. Many of the Councils have added climate change as a new strategic risk and are in the process of operationalising these risks. Other councils may have discussed climate change as a strategic risk within their executive but did not make the final shortlist.

EAGA council	Strategic Climate Change Risk?	Comments
Whitehorse	Yes	Rated as a low residual risk
Boorondara	Yes	In the process of embedding operational risks across Council
Кпох	Yes	Described more generically around natural environmental changes with climate change in brackets
Stonnington	Yes	In 2009-2012 risk management strategy but currently being updated and reviewed
Yarra Ranges	N/A	Do not utilise a strategic risk register, an operational one only
Maroondah	Yes	Considered to be an emerging risk
Monash	Νο	Was considered in recent review but did not make the final priority list

TABLE 5.1: EAGA Councils and climate change as strategic risks

It has been demonstrated by several Councils that having climate change as a key strategic risk can drive more proactive adaptation planning across Councils, and creates a stronger mandate for operationalising risks beyond the typical responsibilities of sustainability and environment teams. Given the breadth of climate risks to Councils and their associated likelihoods and consequences it is therefore a key recommendation of this report that all Councils that operate with a strategic risk register should strive to include climate change as a strategic risk.

Although having climate change as a strategic risk is important, the way it is rated and treated also differs across Councils. For example, in the case of Knox the risk is more generic around natural environmental changes "Failure to appropriately plan and respond to natural environmental changes e.g. Climate change, natural disaster, storm event etc".

Although climate change is listed as a strategic risk for some of the Councils, the rating of the risk does not always reflect the degree of the risk to Councils in terms of likelihood and consequence. Some of the Councils have identified climate change as a strategic risk yet considers the inherent consequence to be insignificant, and the residual rating of the risk to be low. This is unlikely to reflect the nature of the risk and the rating is unlikely to be harmonized with other risks.

5.2 Operational risks across EAGA Councils

Many climate change risks are not new risks to Councils and instead are exacerbated or multiplied by climate change. Interviews with Council employees demonstrated that most areas of Council can appreciate the tangibility of climate risks better when reflecting upon recent experiences of extreme weather events. Participants were asked in follow up interviews to recall recent extreme weather events and consider how well Council dealt with these events. They were then asked to consider how these risks may change if the frequency and severity of them increased, or if certain events happened at the same time. The majority of participants agreed that increasing extreme weather events would place greater strain and demand on Council services and facilities and saw the need for adaptation planning across Council.

Many of the existing operational risks relate to climate events; however they may not be explicitly described as a climate change risk. Although many of the controls that are in place may be considered adequate for current conditions, it is likely that the changes in likelihood and consequence of extreme events and hotter and drier conditions will require new or improved controls.

In many of the Councils, climate change sat as a discrete risk that was the responsibility of sustainability teams within Council to develop appropriate controls, often in the form of climate adaptation plans. However, some of the Councils such as Whitehorse and Boorondara have a much more diverse ownership of climate change risks across Council. This reflects that climate change is a relatively new area of risk for Councils to become familiar with, and through this regional risk assessment, it is hoped that capacity and understanding has increased in regards to the nature of climate change risks facing local government.

It is a key recommendation of this report that Councils adopt and integrate many of the risks contained in the risk registers contained in Appendix 1 into their operational risk registers. The experiences of Boorondara Council demonstrate that this is best done through conversations with the risk manager and Council staff, and preferably with a staff member with sufficient climate adaptation knowledge. It is important that Councils move away from considering climate change as a broad risk that sits within sustainability and environmental planning teams and instead divide the risks and responsibilities out in to the different service areas.

5.3 Council plans, strategies and policies

An important element of mainstreaming climate change in decision making across Councils is to consider how climate change fits into the multiple plans, strategies and policies Council develops. Embedding climate change adaptation into these plans, strategies and policies is a major

opportunity and a key goal of this regional adaptation project. Most of the EAGA Councils follow a similar integrated planning framework, with slight differences in the detail of timing and structure. Figure 5.1 shows the most typical structure of Councils in relation to strategic and operational planning.

Councils will often have a long term vision that may be out to 2020, 2030 or 2040 that is often based upon in depth community engagement and stakeholder analysis to set key long term strategic goals for the municipality. The next level down is the Council Plan that is often developed every 4-5 years and describes Council's objectives, its main activities and how these activities will be resourced. Another element of Council strategic planning is the long term financial plan, which is often reviewed alongside the Council Plan to ensure the objectives of the plan can be adequately resourced.

Many of the operational day-to-day Council decisions are guided by Council strategies, policies, action plans and management plans. These often focus on a particular issue and describe Council's position and priority projects to address that issue. Some strategies and plans are legislated requirements of local government such as the Health and Wellbeing Plans, and Municipal Strategic Statements.

Figure 5.1: Common Council integrated planning frameworks

Table 5.2 lists some of the most relevant existing plans and strategies across EAGA Councils that have some reference to climate change. Although Council plans and strategies may refer to climate change, however often response strategies are either quite vague or focused around mitigation and reducing greenhouse gas emissions. The next step for these plans is to broaden the responses to cover adaptation also.

Council	Climate Change related plans or strategies
Maroondah	Council Plan 2013-2017
	Community Wellbeing Plan
	Sustainability Strategy
	Municipal Emergency Management Plan
Yarra Ranges	Adapting to a changing climate and energy future plan
	Council Plan 2013-2017
	Health and Wellbeing Strategy
	Municipal Emergency Management Plan
Knox	City Plan 2013-2017
	Climate Change Response Plan
	Knox Sustainable Environment Strategy 2008-2018
	Municipal Emergency Management Plan
	Knox Community Health and Wellbeing Strategy 2013-2017
Whitehorse	Sustainability Strategy 2008-2013
	Energy Action Plan 2009-2014
	Whitehorse Climate Change Adaptation Plan 2011
	Water Action Plan 2008-2013
	Whitehorse Climate Change Risk Assessment Report 2009
	Whitehorse Municipal Emergency Management Plan
	Council Plan 2014-2018
	Municipal Public Health and Wellbeing Plan 2013-2017
Monash	Health and Wellbeing Partnership Plan 2013-2017
	Environmental Sustainability Road Map 2011-2015
	Municipal Emergency Management Plan
Stonnington	Municipal Public Health and Wellbeing Plan 2013-2017
	Municipal Emergency Management Plan
	Sustainable Environment Strategy 2013-2017
	Council Plan 2013-2017
Boroondara	Preparing for Climate Change in the City of Boroondara
	Our Low Carbon Future
	Boroondara Municipal Emergency Management Plan
	Municipal Public Health and Wellbeing Plan 2013-2017
	Boroondara Council Plan 2013-2017

TABLE 5.2: Existing Council plans and strategies most relevant to climate change

It is also important to identify the best way to embed climate change into the various plans and policies and to consider the nature, geographic scale and timing of various climate change impacts. Table 5.2 describes the different time and geographic scales of climate change impacts in the EAGA region.

Table 5.3: Different time frames and geographic scales of climate change elements (adapted from LGAQLD 2007)

Climate change element	Specific areas/locations vulnerable?	Sudden, extreme event	Gradual, long term change
Storms (& flooding)	Yes	✓	
Increasing temps	No		\checkmark
Heat waves	Yes*	\checkmark	
Decreasing rainfall	No		\checkmark
Bushfires	Yes	\checkmark	

*Although heat waves are likely to affect the entire EAGA region at the same time, it is possible to identify particular areas of vulnerability based on heat island effects or socio-economic data

The following questions could be considered when reviewing plans and strategies:

- Does the plan or strategy need to consider climate change? Is it exposed to any of the risks in this report?
- If so, does the plan or strategy already consider climate change in detail?
- Are there specific actions beyond simply referring to the risk of climate change?
- Has the plan captured adaptation challenges as well as mitigation?
- Is there important overlap with other areas of Council that need to be better integrated?

Although it is beyond the scope of this project during this phase, a preliminary review of EAGA Council Health and Wellbeing plans showed that there is much diversity amongst Councils as to how climate change is integrated into these plans. This is an example of where some Councils could seek greater integration and collaboration with other areas of Council to achieve co benefits and knowledge sharing.

Addressing climate change risks across Council operations is likely to have many co-benefits and address many of the strategic goals of Council's longer term visions. This is evident in the state Health and Wellbeing plans, as it shows how climate adaptation strategies such as urban forest strategies, energy efficiency programs, and water sensitive urban design can have multiple benefits to health and wellbeing.

Key Recommendations

This regional risk assessment has considered risks to the EAGA Councils from climate change. The following are key recommendations for improvement of the treatment of climate change in Council risk management frameworks and decision making:

- 1. Climate change is an immediate risk to the eastern Councils threatening multiple core objectives of Council plans and long term visions and should be adopted as a key strategic risk.
- Councils should aim to diversify the responsibilities of climate change risk controls across Council service areas and seek to operationalise as many of the risks contained in this report using the ratings as a working guide
- Existing Council plans, strategies, policies and plans should be regularly reviewed to consider climate change adaptation to ensure greater consideration of climate risks across Council decision making
- 4. Councils should seek out opportunities to work with neighbouring Councils to reduce and share the risks through partnerships

Next Steps

This regional risk assessment is designed for the use of Council staff in the EAGA region working in adaptation such as sustainability officers, risk managers and others wishing to gain a better understanding of climate risks. It is also designed to meet the objectives of the second deliverable of the VASP funded Adaptation Roadmap project. However it is intended that the findings in this report are communicated in more accessible mediums in the next phase of the project, such as through a summary report or a series of online short films for each service area.

Addressing climate change risks across Council operations is likely to have many co-benefits and offer many positive opportunities to address the strategic goals of Council's longer term visions and Council plans. The next stage of the project is to develop a regional adaptation roadmap that identifies opportunities for regional response actions to address the key risk areas highlighted in this report. A series of regional workshops will be conducted bringing together Council staff for each of the key themes in this report.

Following the launch of the Adaptation Roadmap, the next phase of the project will be to develop monitoring and evaluation frameworks to track the progress of the project objectives in the next few years. These M&E frameworks will be ongoing to ensure the roadmap and adaptive responses can evolve over time with changing Council priorities.

References

ARUP (2012) Climate Change Vulnerability Assessment of Selected Council Buildings, Whitehorse City Council.

Australian Greenhouse Office (2006) Climate Change Impacts: A guide for business and government, last accessed 28/08/2014 <u>http://www.climatechange.gov.au/climate-change/adapting-climate-change/adaptation-program/climate-change-impact-and</u>

Baker & Mckenzie (2011) Local council risk of liability in the face of climate change – resolving uncertainties; prepared for the Australian Local Government Association, last accessed 28/08/2014 http://alga.asn.au/site/misc/alga/downloads/environment/ALGA%20Consolidated%20Report-v7B-1392955-SYDDMS%20-%20Final.pdf

Bosomworth, K. Trundle, A. McEvoy, D. (2013) Responding to the urban heat island: A policy and institutional analysis, last accessed 28/08/2014 <u>http://www.vcccar.org.au/publication/final-report/responding-to-urban-heat-island-policy-and-institutional-analysis</u>

COAG Select Council on Climate Change (2012) National Adaptation Priorities, last accessed 28/8/2014 <u>https://www.coag.gov.au/node/509</u>

COAG Select Council on Climate Change (2012b) Roles and Responsibilities for Climate Change Adaptation in Australia, last accessed 28/08/2014 <u>https://www.coag.gov.au/sites/default/files/Roles%20and%20Responsibilities%20for%20Climate%2</u> <u>OChange%20Adaptation.pdf</u>

Commissioner for Environmental Sustainability Victoria (CES)(2012) Climate Change - Victoria: The Science, Our People and the State of Play

Committee for Economic Development of Australia (CEDA) (2014) Economic impacts of Climate Change, last accessed 28/8/2014 <u>http://www.ceda.com.au/research-and-policy/research/2014/06/climatechangeeconomics</u>

CSIRO (2013) Climate Futures for Eastern Melbourne: Data prepared for the Eastern Alliance for Greenhouse Action, last accessed 28/08/2014 <u>http://eaga.com.au/wp-content/uploads/App-2b-CSIRO-Climate-Futures Bushland EAGA-May-2013.pdf</u>

CSIRO and the Bureau of Meteorology (BOM) (2014) State of the Climate 2014, Commonwealth of Australia, last accessed 28/08/2014 www.bom.gov.au/state-of-the-climate/

CSIRO, Maunsell and Phillips Fox (2007) Infrastructure and Climate Change Risk Assessment for Victoria, report to the Victorian Government, last accessed 28/08/2014 <u>http://www.climatechange.vic.gov.au/ data/assets/pdf_file/0019/73243/Infrastructureriskassess</u> <u>mentPart1.pdf</u> Department of Environment & Water Resources (2007) Climate change adaptation actions for local government, Available at <u>http://www.nccarf.edu.au/localgov/resources/climate-change-adaptation-actions-local-government</u>

Department of Environment and Primary Industries (2013) Victorian Bushfire Risk Profiles: A foundational framework for strategic bushfire risk assessment last accessed 28/08/2014 http://www.depi.vic.gov.au/ data/assets/pdf_file/0012/235101/Victorian-Bushfire-Risk-Profiles_WEB2.pdf

Department of Sustainability and Environment (2008) Climate Change in the Port Phillip and Western Port Region, Victorian State Government, last accessed 29/08/2014 http://www.climatechange.vic.gov.au/regional-projections/port-philip-and-westernport

Department of Health (2012) Municipal Public Health and Wellbeing Plan: Having regard to Climate Change, last accessed 28/8/2014 <u>http://www.health.vic.gov.au/environment/climate-change.htm</u>

Department of Health (2013) Scoping of climate change impacts on population health and vulnerabilities, benchmarking report

Department of Justice (2014) Emergency risks in Victoria, last accessed 28/08/2014 <u>http://www.justice.vic.gov.au/home/safer+communities/emergencies/emergency+risks+in+victoria</u> <u>+report</u>

Department of Primary Industries (DPI 2008) Climate change and the potential distribution of weeds, last accessed 28/08/2014

http://www.climatechange.vic.gov.au/ data/assets/pdf_file/0007/73249/Whithertheweedsunderc limatechange2008v1.pdf

Department of Sustainability and Environment (2008) Climate Change in Port Phillip and Western Port, last accessed 28/08/2014

http://www.climatechange.vic.gov.au/ data/assets/pdf_file/0003/73029/PPWP_WEB.pdf

Department of Sustainability and Environment (2013) Victorian Climate Change Adaptation Plan, Victorian State Government, last accessed 27/08/2014

http://www.climatechange.vic.gov.au/adapting-to-climate-change/Victorian-Climate-Change-Adaptation-Plan

DLA Piper (2014) Responding to litigation risk from Climate Change – informed decision making, last accessed 28/08/2014

http://www.dlapiper.com/~/media/Files/Insights/Publications/2014/05/Climate%20Change%20Upd ate%20%20May%202014.pdf

Eastern Alliance for Greenhouse Action (2013) EAGA Strategic Plan, last accessed 28/8/2014 http://eaga.com.au/wp-content/uploads/EAGA-Strategic-Plan-Summary-2013.pdf Eastern Alliance for Greenhouse Action (2013b) Bushland and Urban Biodiversity Management in a Changing Climate, last accessed 28/08/2014 <u>http://eaga.com.au/wp-content/uploads/App-2a-Climate-Change-Projections_Bushland_EAGA-May-2013.pdf</u>

Queensland University of Technology 2010, Impacts and adaptation response of infrastructure and communities to heatwaves: the southern Australian experience of 2009, report for the National Climate Change Adaptation Research Facility, Gold Coast, Australia.

Hughes, L. & McMichael, T. (2011) The Critical Decade: Climate change and health, The Climate Commission, last accessed 28/08/2014

https://cci.anu.edu.au/storage/CC%20and%20Hlth%20in%20Australia,%20Climate%20Commission% 20(Hughes%20&%20McMichael),%20Dec%202011.pdf

Intergovernmental Panel on Climate Change (2014) Climate Impacts 2014: Adaptation, Vulnerability and Sectoral Aspects, Working Group II contribution to the Fifth Assessment Report on the Intergovernmental Panel on Climate Change, last accessed 27/08/2014 http://www.ipcc.ch/report/ar5/

Local Government Association of Queensland (LGAQLD)(2007) Adapting to climate change: A queensland local government guide.

Maddocks (2010) Planning policy and practice: The right mechanism to tackle climate change? Last accessed 28/08/2014 <u>https://www.maddocks.com.au/uploads/articles/planning-policy-and-practice-the-right-mechanism-to-tackle-climate-change-update-september-2010.pdf</u>

Meinshausen, M. Meinshausen, N. Hare, S.W. Raper, C.B. Frieler, K. Knutti, R. Frame, D.J. Allen, M. (2009) Greenhouse gas emissions targets for limiting global warming to 2 degrees Celsius, Nature, vol. 458, pp.1158-1163.

Municipal Association of Victoria (2010) Stocktake of Current Victorian Local Government Climate Change Adaptation Planning, last accessed 28/08/2014

http://www.sustainability.mav.asn.au/council-

operations/Stocktake of Current Victorian Local Government Climate Change Adaptation Plann ing-7902

National Centre for Climate Change Adaptation Research Facility (NCCCARF) (2012) Challenges of adaptation for local governments, NCCCARF Policy Guidance brief no.5, last accessed 28/08/2014 http://www.nccarf.edu.au/publications/policy-guidance-brief-local-government

National Centre for Climate Change Adaptation Research Facility (NCCCARF) (2013) Climate proofing Australia's infrastructure, NCCCARF Policy Guidance brief no.7, last accessed 28/08/2014 http://www.nccarf.edu.au/publications/policy-guidance-brief-emergency-management

National Centre for Climate Change Adaptation Research Facility (NCCCARF) (2013b) Emergency management and climate change, NCCCARF Policy Guidance brief no.10, last accessed 28/08/2014 http://www.nccarf.edu.au/publications/policy-guidance-brief-emergency-management

National Centre for Climate Change Adaptation Research Facility (NCCCARF) (2013c) Ensuring Australia's urban water supplies under climate change, NCCCARF Policy Guidance brief no.2, last accessed 28/08/2014 <u>http://www.nccarf.edu.au/publications/policy-guidance-brief-water-supplies</u>

National Centre for Climate Change Adaptation Research Facility (NCCCARF) (2013d) Adapting ecosystems to climate change, NCCCARF Policy Guidance brief no.8, last accessed 28/08/2014 http://www.nccarf.edu.au/publications/policy-guidance-brief-ecosystems

Office of Living Victoria (OLV) (2014) Developing the Metropolitan Whole of Water Cycle Strategic Framework 2014-2024, in press

Office of the Emergency Services Commissioner Victoria (OESC) (2012) Community engagement in the emergency management sector: Developing resilience to climate change, last accessed 28/08/2014 <u>http://fire-com-live-wp.s3.amazonaws.com/wp-content/uploads/ClimateChange.pdf</u>

Price Waterhouse Coopers (2011) Protecting Human Health and safety during severe and extreme heat events, last accessed 28/08/2014 http://www.pwc.com.au/industry/government/assets/extreme-heat-events-nov11.pdf

South Australian Local Government Association (SALGA)(2012) Climate change adaptation programme, last accessed 28/08/2014 <u>https://www.lga.sa.gov.au/webdata/resources/files/LGA-99812(3).pdf</u>

South Australian Local Government Association (SALGA)(2012b) Quantifying the costs of climate change impacts on local government assets, last accessed 28/08/2014 http://www.nccarf.edu.au/publications/quantifying-cost-climate-change-impacts

Western Alliance for Greenhouse Action (2011) Climate Change Risk Assessment, WAGA.

Appendix 1: Council climate risk registers

The following risk registers arose from the climate change risk workshops held at the 4 EAGA Councils; Maroondah, Monash, Knox and Stonnington. The remaining three EAGA Councils already had existing climate risk registers and so are not included here.

City of Stonnington Climate Risk Register

The following risks were identified in a workshop at Stonnington Council held on the 26th June 2014, and reviewed and revised by Rob Law, EAGA.

All risks were rated in the workshop, and then later reviewed and completed using the Stonnington Risk Management Framework, and considering residual risks after taking into account existing council controls and the future climate projections

Climate projections are based upon work completed by CSIRO for EAGA in 2013 for the eastern region of melbourne.

Council										
Dep.	Risk Description	L	Likelihood Consequence			Rating				
		Now	2030	2055	2015	2030	2055	2015	2030	2055
City	Increased asset deterioration from increased severity of rainfall events lead									
Works	to increased maintenance and life cycle costs	U	Р	L	М	Ma	м	М	н	н
City	Increased severity of rainfall events leads to damage to roads and footpaths									
Works	leading to reduced mobility	Р	Р	L	М	М	м	М	М	н
City	Reduced average rainfall leads to increased maintenance and life cycle costs									
Works	of open spaces such as sports grounds, parks etc.	Р	L	L	М	М	М	М	н	н
City										
Works	Hotter drier conditions lead to loss of biodiversity	Р	L	L	М	М	Ma	М	Н	Е

City Works	Loss of public amenity value due to increased temperatures and drier conditions	U	Р	L	м	Ma	Ma	м	н	Е
City Works	Increased maintenance and costs for water management such as flushing stormwater drains, treating stormwater and importing water	Р	Р	L	М	м	м	м	м	н
City Works	Increased asset deterioration from increasing temperatures leading to increased costs of road and paths maintenance	Р	Р	L	М	м	м	м	М	Н
City Works	Increasing demand on energy in heatwaves leads to increased costs of operating technology such as air conditioning	Р	L	L	М	м	м	м	н	Н
City Works	Reduced water availability leads to increased reliance on irrigation for parks, reserves and sporting grounds leading to increased costs and reduced amenity	U	Ρ	L	Ma	Ma	Ma	м	н	Е
City Works	Drier conditions lead to more root damage to property leading to increased insurance claims and maintenance costs	U	Р	Р	М	м	м	м	м	м
City Works	Hotter drier conditions leads to deterioration of existing vegetation leading to increased costs for tree replacement and environmental management	U	Ρ	Ρ	М	м	Ma	м	м	н
City Works	Increased fire threat in bushland areas leads to increasing maintenance costs associated with fire prevention activities	U	Р	Р	М	м	м	м	М	М
City Works	Reduced water availability leads to loss of wetlands impacting upon habitat, wildlife and public amenity	U	U	Р	Ma	Ma	Ma	м	М	Н
City Works	Power outages in municipality from storm events increase demand on council emergency services and recovery	Р	Р	Р	М	м	Ma	м	М	Н
City Works	Increasing heatwaves lead to council machine and plant failures leading to disruption to council service delivery and operations	Р	L	L	М	м	Ma	м	н	E
City Works	Increased demand for emergency response due to increased bushfire danger from urban forests on yarra river fringe	U	U	Р	М	м	м	м	М	м

City Works	Reduced average rainfall leads to increased need for water storage/retention infrastructure leading to increased costs	Р	L	L	м	м	м	м	н	н
City	Increasing temperatures and reduced water availability lead to loss of street	P	P	1	м	м	м	м	м	L
City Works	Loss of biodiversity from hotter drier conditions	P	P	L	м	м	м	M	M	н
City Works	Inadequate flood infrastructure to cope with increased intensity of rainfall	Р	L	L	м	м	Ma	м	н	E
Corpora te	Increase in public liability claims relating to floods and storm damage	Р	Р	L	Mi	М	м	м	м	н
Corpora te	Increasing cost of fresh water reducing capacity to provide and deliver council services	U	Р	L	м	М	м	м	м	Н
Corpora te	Increase in liability claims relating to flooding and storm damage to private property from council assets	Р	L	L	м	м	м	м	н	Н
Corpora te	Loss of business continuity due to power outages in E weather events	Р	L	L	м	м	м	м	н	н
Corpora te	Increasing number of hot days and E heat policy lead to reduction in council productivity and increase in absenteeism	Р	L	L	м	м	м	м	н	н
Corpora te	Service delivery reduced due to OH&S policy of outdoor workers in E heat days	Р	L	L	м	м	м	м	н	н
Corpora te	Transport disruptions during heatwaves lead to loss of business continuity as staff cant attend work	Р	Р	L	м	м	м	м	м	н
Corpora te	Reduced council service delivery due to increased number of brown/black outs during heatwaves and E weather events	Р	L	L	м	м	м	м	н	н
Corpora te	Loss of paper based records and historical knowledge due to storm and flooding events	U	U	Р	м	м	м	м	м	М

Corpora	Change to insurance premiums due to increasing frequency and severity of E									
te	weather events	Р	Р	L	М	Μ	М	М	М	Н
Planning										
and										
Develop	Increased costs of facility upgrades and maintenance to Cri council assets									
ment	from increasing temperatures and heatwaves	Р	Р	L	М	Μ	М	М	М	Н
Planning										
and										
Develop	Increasing emphasis on design solutions to capture and reuse water leading									
ment	to increasing capital costs	Р	Р	L	М	Μ	М	М	М	Н
Planning										
and										
Develop										
ment	Inadequate building design for projected climate conditions	Р	Р	L	М	Μ	Ma	М	М	Е
Planning										
and										
Develop										
ment	Building design and Her density leads to exacerbated heat island effect	Р	L	L	М	Μ	М	М	н	н
Planning										
and										
Develop	Heightened community anxiety over increased fire risk leading to E reactions									
ment	such as illegal vegetation clearing	Р	Р	L	М	М	М	М	М	н
Planning										
and	Insufficient green assets/infrastructure (shaded areas, parking options etc.)									
Develop	to reduce heat island effect during increasing severity and frequency of									
ment	heatwaves	Р	Р	Р	М	М	м	М	М	М
Social										
Develop	Reduced average rainfall leads to public health risks associated with									
ment	stagnant water bodies	U	Р	L	м	М	м	М	М	н

Social										
Develop	Increasing heatwaves place greater demand on aged care/maternal									
ment	health/childcare services	Р	Р	L	М	Ma	Ma	М	н	Е
Social										
Develop	Inadequate evacuation centres to deal with increasing heatwaves for									
ment	vulnerable people	Р	Р	L	М	Ma	Ma	М	н	Е
Social										
Develop	HACC services unable to meet increased demand for service delivery to									
ment	vulnerable groups due to increased severity and frequency of heatwaves	U	Р	L	М	М	М	М	М	н
Social										
Develop	Demand on animal welfare issues during E weather events leading to									
ment	increased call outs and rescues	U	Р	Р	М	М	М	М	М	М
Social										
Develop	Increased demand on council facilities such as pools and libraries during									
ment	heatwave events	Р	L	L	М	М	Ma	М	Н	Е
Social										
Develop	Increasing number of hot days reduce council meal delivery capacity									
ment	threatening vulnerable people and leading to more isolation	Р	Р	Р	м	М	М	М	М	М
Sustaina										
ble	E weather events displaces residents increasing demand on council recovery									
Futures	centres	Р	Р	L	М	М	М	М	М	Н
Sustaina										
ble										
Futures	Increased severity of storms leads to reduced public safety	Р	Р	L	М	Ma	Ma	М	Н	Е
Sustaina										
ble	Drought conditions reduce residents health and wellbeing due to reduced									
Futures	use of open spaces for social activity	U	Р	Р	М	М	М	М	М	М
Sustaina	Increasing temperatures and heatwaves lead to increased mortality in									
ble	vulnerable residents	Р	L	L	Cat	Cat	Cat	E	E	E

Futures										
Sustaina										
ble	Her temperatures increase incidence of food and water borne diseases									
Futures	placing greater demand on community health services	U	Р	Р	Μ	Μ	Ma	М	М	н
Sustaina										
ble	Community connectedness and health and fitness reduced due to closure of									
Futures	sporting grounds in drier hotter conditions	U	Р	Р	Μ	М	М	М	М	М
Sustaina										
ble	Increasing climate variation and heatwaves sees reduction in business									
Futures	activity impacting on regional economic development	Р	Р	Р	Μ	Ma	Ma	М	н	н
Sustaina										
ble	Council inability to communicate effectively to all community (CAL,									
Futures	disability, aged etc.) during E weather events	Р	Р	Р	Ma	Ma	Ma	Н	н	Н

Knox City Council Climate Change Risk Register

The following risks were identified in a workshop at Knox Council held on the 22nd May 2014, and reviewed and revised by Rob Law, EAGA.

All risks were rated in the workshop, and then later reviewed and completed using the Knox Risk Management Framework, and considering residual risks after taking into account existing council controls and the future climate projections

Climate projections are based upon work completed by CSIRO for EAGA in 2013 for the eastern region of melbourne.

			I	Residual	risk ratin	g after ex	kisting co	ntrols		
Council			Likelihoo	d	Co	onsequen	ce		Rating	
Department	Risk Description	Now 2030 2055 2015 2030 2055 2015 2030								2055

	Inadequate community safe areas during bushfires,									
City development	heatwaves and E events due to increased demand	Р	Р	L	М	М	Ma	М	М	н
	Lack of available drinking water and increasing water									
City development	restrictions due to reduced average rainfall	Р	Р	AC	М	Ma	М	М	н	н
	Increasing bushfire activity leading to health issues									
City development	such as asthma and anxiety in the community	Р	L	L	Mi	М	М	L	М	М
City development	Loss of lives due to increased bushfire activity	Р	Р	Р	Ma	Ma	Ma	н	н	н
	Food security issues due to rising costs of fresh food									
City development	due to reduced water availability	Р	Р	L	Mi	М	М	L	М	М
	Drought conditions reduce air quality from									
City development	increasing levels of dust	U	Р	Р	Mi	М	М	L	М	М
	Risk that scale of impacts may be on multiple									
	localities requiring widespread response and									
City development	reduced capacity	U	Р	L	Mi	М	Ma	L	М	Н
	Local economic impact on businesses that heavily									
City development	rely on water availability	Р	Р	Р	М	М	Ma	М	М	Н
	Bushfire activity contaminating water supplies									
	leading to health issues and increased council									
City development	resource demand for water treatment and supply	Р	L	AC	Mi	М	Ma	L	М	Н
	Impact on access to isolated communities due to									
City development	flooding	Rare	U	Р	Μ	М	М	L	М	М
Community	Increased intensity of weather events lead to									
services	heightened community anxiety over safety	U	Р	L	Μ	М	М	M	М	М
	Increasing demand on electricity leading to more									
Community	brown and blackouts leading to safety issue for									
services	vulnerable people	Р	L	L	М	М	М	M	М	М
Community	Mortality increased in vulnerable communities due									
services	to increasing number of heatwaves	Р	L	AC	Ma	Ma	Ma	Н	Н	Н
Community	Increasing number of hot days has detrimental	L	AC	AC	Ma	Ma	Ma	Н	Н	Н

services	impact on community and staff wellbeing									
Community	Operational costs of bringing in water from other									
services	regions to meet demand	U	Р	Р	Mi	М	М	L	М	М
	Risk of loss of reputation due to lack of planning and									
Corporate	appropriate resourcing for addressing climate									
development	change impacts	U	Р	L	Mi	Μ	Ma	L	М	Н
	Loss of business continuity and service delivery due									
Corporate	to black/brown outs from E weather events and									
development	heatwaves	Р	L	AC	Ma	Ma	Ma	Н	н	Н
Corporate	Risk of increased accidents for council staff from									
development	flooding and E weather	Р	L	AC	М	Μ	Μ	М	М	н
Corporate	Inadequate capacity of staff/plant equipment to deal									
development	with increasing E events	Р	L	AC	Ma	Ma	Ma	н	н	Н
Corporate	Risk of reducing service levels due to funding being									
development	directed to recovery	Р	Р	L	М	Μ	Ma	М	М	Н
Corporate	Resource drain due to staff involved in emergency									
development	management activities	Р	L	AC	М	М	М	М	М	н
Corporate	Economic impact of loss of business and council									
development	services restricted from increasing E weather events	Р	Р	L	М	Μ	Μ	М	М	М
Corporate	Increasing temperatures place more demand on									
development	energy leading to increased energy costs	L	L	AC	М	Ma	Ma	М	н	Н
	Increased OH&S risks with council staff working in									
Corporate	Her temperatures including mental stress and									
development	fatigue	Р	Р	L	М	Μ	Μ	М	М	М

	Inability to retain volunteer staff during heatwave									
Corporate	conditions impacting on continuity of service									
development	delivery	Р	L	AC	Cri	Cri	Cri	н	E	E
Corporate	Ler council productivity due to road closures from									
development	increased bushfire activity	U	Р	Р	М	М	М	М	М	М
	Failure to build in budget contigency to cover									
Corporate	environmental events and other emergency events									
development	that are increasing	U	Р	Р	М	М	Ma	М	М	н
Corporate	Public health and safety and liability issues from Her									
development	risks of limbfall and tree dieback	AC	AC	AC	Neg	Mi	М	М	М	н
Engineering and	Current building design standards not adequate for									
Infrastructure	projected climate conditions	Р	L	AC	Ma	Ma	Cri	н	н	Е
Engineering and										
Infrastructure	Insufficient cooling strategies for buildings	Р	L	AC	Ma	Ma	Ma	н	н	н
Engineering and	E weather events leads to property/assets damage									
Infrastructure	leading to increased maintenance and life cycle costs	Р	L	AC	М	Ma	Ma	М	н	н
Engineering and	Inadequate infrastructure to deal with increasing									
Infrastructure	rainfall events	Р	Р	L	М	Ma	Ma	М	н	н
Engineering and	Increasing demand on electricity leading to more									
Infrastructure	brown and blackouts leading to damaged assets	Р	L	L	М	М	М	М	М	М
	Increasing temperatures leading to increased									
Engineering and	damage of infrastructure leading to more frequent									
Infrastructure	replacement costs	Р	Р	L	Μ	М	Ma	М	М	н
Engineering and	Increased bushfire risks lead to damage to									
Infrastructure	assets/infrastructure	Р	L	AC	Ma	Ma	Ma	н	Н	н
Engineering and	Decreased soil moisture leading to accelerated									
Infrastructure	deterioriation of buildings, roads, footpaths	Р	L	L	М	Μ	М	М	М	М
Engineering and	Cracked service connections such as broken water or									
Infrastructure	gas pipelines due to drought conditions	U	Р	Р	Ma	Ma	Ma	М	Н	Н

Engineering and	Loss of amenity to community due to damage to									
Infrastructure	natural and built assets from drought conditions	U	Р	L	Mi	М	М	L	М	М
Engineering and	Impact of fallen trees/branches in storm events on									
Infrastructure	property and people	L	L	AC	М	М	M	М	М	н
Engineering and	Loss of use of public open space due to flooding and									
Infrastructure	storm damage	Р	Р	L	М	М	Ma	М	М	н
Engineering and	Erosion and damage to sensitive environmental									
Infrastructure	areas	Р	Р	L	М	М	Ma	М	М	н
	Increasing temperatures lead to increased loss of									
Engineering and	vegetation and changes to composition leading to									
Infrastructure	loss of biodiversity and amenity	U	L	AC	Ma	Ma	Ma	М	Н	н
	Increasing hard surfaces from decreased rainfall on									
Engineering and	sports grounds poses public safety risks, increased									
Infrastructure	maintenance costs and Ler patronage	Р	L	L	Ma	Ma	Ma	Н	Н	н
Engineering and	Increased bushfire risks lead to damage to bushland									
Infrastructure	reserves	Р	L	L	М	М	Μ	М	М	М
	Changing fire regimes leading to loss and decline in									
Engineering and	biodiversity leading to increased management									
Infrastructure	efforts	AC	AC	AC	Ma	Cri	Cri	Н	Е	E
Engineering and	Risk of liability issues from bushfires spreading from									
Infrastructure	reserves to private properties	Р	Р	L	Ma	Ma	Ma	Н	Н	Н
Engineering and										
Infrastructure	Change to use of parks due to drought conditions	U	Р	L	Mi	М	М	L	М	М
Engineering and	Increasing costs of irrigation for parks to combat									
Infrastructure	reduced average rainfall	U	Р	L	М	М	Ma	М	М	Н
Engineering and	More plant and tree mortality from drought requires									
Infrastructure	more maintenance, removal works	Р	L	L	М	Ma	Ma	М	Н	Н

Monash City Council Climate Change Risk Register

The following risks were identified in a workshop at Monash Council held on the 26th May 2014, and reviewed and revised by Rob Law, EAGA.

All risks were rated in the workshop, and then later reviewed and completed using the Monash Risk Management Framework, and considering residual risks after taking into account existing council controls and the future climate projections

Climate projections are based upon work completed by CSIRO for EAGA in 2013 for the eastern region of melbourne.

Council		Likelihood									
Department	Risk Description	Ľ	ikelihoo	d	Co	nsequer	nce		Rating	ļ	
		Now	2030	2055	2015	2030	2055	2015	2030	2055	
City	Reduced water availability leads to increased costs of fresh food										
development	leading to reduced regional food security	U	Р	Р	М	Μ	Ma	М	М	Н	
City	Her temperatures increasing incidence of food and water-borne										
development	diseases	U	Р	Р	М	Μ	Ma	М	М	Н	
City	Reduced potable water availability leads to increased costs										
development	from importing water	U	Р	Р	Mi	М	М	М	М	М	
City	Current building design standards not adequate for projected										
development	climate conditions	Р	Р	L	М	М	М	М	М	н	
Community											
development	E weather events lead to displaced communities straining										
and services	council services and refuge centres	Р	Р	L	М	М	Ma	М	М	н	
Community											
development	Mortality increased in vulnerable communities due to										
and services	increasing number of heatwaves	Р	L	L	Cat	Cat	Cat	Е	Е	Е	
Community											
development	Increasing number of hot days has detrimental impact on										
and services	community and staff wellbeing	Р	Р	L	М	М	Ma	М	М	Н	

Community										
development	Increasing number of heatwaves places greater strain on									
and services	medical system and need for council assistance	Р	Р	L	М	М	Ma	М	М	Н
Community										
development	More Extreme weather events and climate variation impacting									
and services	on viability of local business and industries	Р	Р	L	М	Ma	Ma	M	Н	Н
Community										
development	Hotter drier conditions lead to increase in dust storms leading									
and services	to public health issues	U	Р	Р	М	М	М	M	М	М
Community										
development										
and services	Financial costs associated with prolonged drought conditions	U	Р	L	М	М	М	M	М	Н
Community										
development	More heatwaves lead to greater risks to vulnerable people of									
and services	heatstroke and loss of life	Р	L	С	Cat	Cat	Cat	E	E	E
Community										
development	Inadequate council facilities for the elderly and the young in									
and services	bushfires, heatwaves and Extreme weather	U	Р	L	М	Ma	М	M	H	Н
Community										
development	Reduced regional productivity employment due to impacts of									
and services	climate change	U	Р	Р	М	М	Ma	M	M	Н
Community										
development			_							
and services	Limited water for swimming pools and greater evaporation	U	Р	L	М	М	М	M	M	Н
Community										
development	Outdoor pools pose greater health issue from sunstroke with			-						
and services	increasing hot days	U	U	Р	Mi	М	М	M	M	М
Community										
development	Greater demand placed on council pools and air conditioned		Ι.	~						
and services	buildings leading to safety and resource issues	P	L	C	IVI	IVI	IVI	M	H	H

Community										
development	Increase in allergies and asthma attacks associated with dust									
and services	and pollen during grass cutting or constructing fire breaks	U	Р	Р	Mi	М	М	М	М	М
	E storm events increase damage to council property and									
	infrastructure resulting in public safety issues and injury or									
Corporate	death	Р	Р	L	Ma	Ma	Cat	Н	Н	E
	E storm events increase damage to council assets resulting in									
Corporate	reduced public amenity and loss of reputation	Р	Р	L	Mi	М	М	М	М	н
	Increased intensity of Extreme weather events leads to									
Corporate	increased anxiety over community safety and loss of reputation	U	Р	Р	Mi	М	Ma	М	М	н
	Increased council vehicle accidents from more Extreme weather									
Corporate	events	U	Р	Р	Mi	Mi	Mi	М	М	М
	Increased Extreme weather leads to reduced public safety and									
Corporate	risks of injury or death to council staff and community	Р	Р	L	Cat	Cat	Cat	Е	E	Е
	Greater demand on council resources from more frequent									
Corporate	Extreme weather events leads to loss of business continuity	Р	L	С	М	Ma	Cat	М	Н	E
	Increased bushfire danger leads to more loss of life of council									
Corporate	staff and community	U	Р	L	Cat	Cat	Cat	Н	E	E
	Increasing temperatures and droughts impact on health and									
Corporate	wellbeing of staff and residents	Р	Р	L	М	Ma	Ma	М	Н	Н
	Financial exposure to increased running costs of cooling council									
Corporate	buildings	Р	L	L	М	М	М	М	Н	Н
	Reduced council service delivery due to council staff supporting									
Corporate	another council emergency event	U	Р	Р	М	М	М	М	М	М
	Transport and energy disruptions reduce council staff ability to									
Corporate	come to work	Р	Р	L	М	М	М	М	М	Н
	Future liability from failure to account for climate change									
Corporate	properly in council planning	Р	Р	Р	Μ	М	Ma	М	М	Н
	E storm events increase damage to council property and									
Infrastructure	infrastructure resulting in increased maintenance and life cycle	Р	Р	L	М	Ma	Ma	М	н	н

	costs									
	Inadequate flood infrastructure and drain size to deal with									
Infrastructure	increasing intensity of rainfall events	Р	Р	L	Mi	м	М	М	М	н
	Increased toxin concentrations/pollution entering waterways									
Infrastructure	folLing intense rainfall events leading to reduced water quality	U	Р	L	Mi	М	М	М	М	н
	Damage to creek ecosystems as a result of increased									
Infrastructure	H fL rates and greater erosion from more intense rainfall events	Р	Р	L	Mi	М	М	М	М	н
	Increased weed spread from flooding events lead to increased									
Infrastructure	costs of weed management and revegetation	U	Р	Р	М	М	М	М	М	М
	Increased Extreme weather leads to more road closures									
	reducing council service delivery and restricting mobility of									
Infrastructure	goods and people	U	U	Р	Mi	М	Μ	М	М	М
	Damage to Cri assets and services due to Extreme weather									
Infrastructure	events	U	U	Р	М	М	Ma	М	М	Н
	Increased intensity of rainfall events leads to damage to roads,									
	paths and drainage infrastructure leading to increasing									
Infrastructure	maintenance and life cycle costs	Р	Р	L	Mi	М	М	M	М	Н
	Inadequate council resources (staff/plant) to react to increasing									
Infrastructure	Extreme weather events and post recovery	U	Р	L	М	Ma	Ma	M	Н	Н
	Legislative breaches relating to electrical line clearance from									
Infrastructure	falling trees induced by droughts and Extreme weather	U	Р	Р	Mi	Mi	М	M	М	М
	Hardening of surfaces as erosion response leads to perverse									
	outcome of increased speed of water entering creeks increasing									
Infrastructure	erosion	U	Р	Р	М	М	Ma	M	М	Н
	Increasing temperatures lead to increased loss of vegetation									
	and changes to composition leading to loss of biodiversity and									
Infrastructure	amenity	U	Р	Р	Ma	Ma	Ma	Н	Н	Н
	Drier, hotter conditions decrease soil moisture increasing									
Infrastructure	damage to road surfaces, footpaths and drains	Р	Р	L	Mi	М	M	М	Μ	Н

	Increasing demand on electricity leading to more brown and									
Infrastructure	blackouts leading to damaged assets and service disruptions	Р	Р	L	М	М	Ma	М	М	н
	Damage to transport and built infrastructure due to increased									
	temperatures and heatwaves leading to Her maintenance and									
Infrastructure	replacement costs	Р	Р	L	Mi	М	Ma	М	М	Н
Infrastructure	Changing fire regimes lead to long term loss of biodiversity	Р	Р	L	М	Ma	Ma	М	н	н
	Inadequate council resources to respond to more Extreme fire									
Infrastructure	danger days	Р	Р	L	М	М	Ma	М	М	Н
	Increased loss of private assets due to bushfires leads to strain									
Infrastructure	on council support resources	U	U	Р	Mi	М	М	М	М	М
	Increased bushfire danger leads to more losses or damage to									
Infrastructure	key council building and infrastructure	Р	Р	L	Ma	Ma	Cat	Н	Н	E
	Increased demand on council service provision and shelters									
Infrastructure	from increasing bushfires	Р	Р	L	М	М	М	М	М	Н
	Lack of adequate communication and management of									
Infrastructure	community in Extreme weather events	U	Р	Р	М	Ma	Ma	М	Н	Н
	More Extreme wildfires and planned burning lead to more local									
Infrastructure	carbon emissions	Р	Р	Р	М	М	М	М	М	М
	Hotter drier conditions lead to loss of biodiversity and increased									
Infrastructure	environmental management costs	Р	L	С	М	Ma	Ma	М	H	E
	Hotter drier conditions change animal and insect species									
Infrastructure	leading to loss of biodiversity and increase in invasive species	U	Р	Р	М	М	М	М	M	М
	Reduced water availability leads to greater demand on water									
Infrastructure	resources and water reuse infrastructure	U	Р	L	М	Ma	Ma	М	H	Н
	Poorer water quality due to hotter drier conditions and reduced									
Infrastructure	rainfall flushing events	U	Р	L	М	М	М	М	M	Н
	Reduced water quality and quantity results in less									
	watering/irrigation of open space and sports grounds leading to			1.						
Infrastructure	loss of amenity and oval closures	U	L	L	M	M	M	М	H ,	H

	Hotter drier conditions lead to increased need for more regular									
Infrastructure	cleaning of council assets	U	Р	L	Mi	Mi	М	М	М	н
	Hotter drier conditions leads to increased maintenance of									
Infrastructure	drainage infrastructure	U	Р	L	М	М	М	М	М	Н
	Reduced water availability leads to hardening of sporting									
Infrastructure	grounds leading to increased risk of injury	U	Р	L	М	М	М	М	М	Н
Infrastructure	Inadequate water supply	U	Р	L	М	М	Ma	М	М	н
	Greater probability of tree limb fall due to hotter drier									
Infrastructure	conditions and more Extreme weather	Р	Р	L	М	М	М	М	М	Н
	Loss of cultural and environmental heritage from more E,									
Infrastructure	frequent bushfires	Р	Р	Р	М	М	Ma	М	М	Н
	Increasing temperatures mean less people walk and cycle,									
Infrastructure	leading to more reliance on cars affecting transport	U	Р	Р	М	М	М	М	М	М
	Greater fire risk on public land leads to damage to private									
Infrastructure	assets and risk of liability	U	Р	Р	М	М	Ma	M	М	Н
	Loss of regionally significant biodiversity in valley reserve from									
Infrastructure	repeated fire events	Р	Р	L	Ma	Ma	Ma	Н	Н	Н
	Increased costs for environmental mangement from replacing									
Infrastructure	vegetation	U	Р	L	М	М	М	М	М	Н
	Cost in variation in landscaping design and drought tolerant									
Infrastructure	plant species as a result of drought conditions	Р	Р	Р	М	М	М	М	М	М
	Reduced water leads to increase in algal blooms, drying out of		_							
Infrastructure	creek beds	U	Р	L	М	М	М	М	М	Н
	Increase in street tree mortality leading to reduced amenity and									
Infrastructure	increased heat island effect	U	L	L	М	М	М	Μ	Н	Н
	Increased demand on emergency response and recovery									
Infrastructure	operations	Р	L	C	М	M	М	Μ	Н	Н
	Lack of collaboration between neighbouring upstream councils									
Infrastructure	In flood plone areas leads to increased flood damage	U	Р	P	M	M	M	M	M	M

Maroondah City Council Climate Risk Register

The following risks were identified in a workshop at Maroondah Council held on the 10th June 2014, and reviewed and revised by Rob Law, EAGA. Further refining occurred through interviews with participants carried out by Lynn Hebblethwaite in July and August.

All risks were rated in the workshop, and then later reviewed and completed using the Maroondah Risk Management Framework, and considering residual risks after taking into account existing council controls and the future climate projections

Climate projections are based upon work completed by CSIRO for EAGA in 2013 for the eastern region of Melbourne.

		Likelih	lood		Consequence			Residual risk rating		
Council work										
area	Risk Description	Now	2030	2055	Now	2030	2055	Now	2030	2055
	Changing weather events increasing exposure to									
Risk	Council Property Insurance Program (Claims,									
Management	administration and premiums)	L	L	L	М	М	Ma	Н	н	E
	Council unable to meet increased demand on council									
Operations	services during E weather events	L	L	С	М	М	Ma	н	н	Е
	Increased bushfire danger leads to more losses or									
Assets	damage to council building and infrastructure	L	L	L	Ma	Ma	Ma	Е	Е	Е
	Council emergency and recovery facilities unable to									
Emergency	cope with increased frequency and severity of E									
Management	weather events	Р	L	С	М	М	Ma	н	н	E
	More E bushfires lead to loss of biodiversity and long									
Bushland &	term recovery impacts requiring more management									
Planning	interventions	U	Р	Р	Ma	Ma	Ma	н	Е	Е
	Increased risk of chemical contamination and loss of									
	industrial assets in bayswater north precinct due to									
Planning	increased bushfires	U	U	U	Ma	Ma	Ma	Н	н	н

	Her fire risk leads to requirement for larger fire breaks									
Bushland &	and more burning off leading to impacts on									
Planning	biodiversity and reduced air quality	Р	L	L	Mi	Mi	M	М	М	н
	More bushfire danger days lead to more council staff									
Finance &	working on emergency response disrupting business									
Governance	continuity	Р	L	L	М	М	Ma	н	н	E
	Weeds favoured due to drier and hotter conditions									
Bushland,	increasing competion against native species	Р	Р	L	Mi	М	М	М	н	н
Emergency	Loss of public assets during bushfires reduce councils									
Management	ability to service community	U	U	Р	М	М	М	М	м	н
	Increased resources required to manage and mitigate									
	increasing frequency of climate events reduce other									
Finance	areas of council service delivery	Р	L	С	Mi	М	Ma	М	н	E
Emergency	Lack of adequate communication to community									
Management	during E weather events	Р	Р	Р	М	М	М	н	н	н
	Changing weather events increasing exposure to									
Risk	Council Liability Insurance Program (Claims,									
Management	administration and premiums).	L	L	L	М	М	Ma	н	н	E
	More E climate conditions and weather events									
	damage Council and community infrastructure									
	increasing maintenance and operating costs and									
Assets	reduce asset lifespans and degradation	Р	L	L	М	Ma	Ma	н	Е	E
Openspace,										
Operations,	Increased intensity of rainfall events leads to greater									
Assets,	erosion of creek banks, parks, drains leading to									
Planning	reduced public safety and reduced water quality	Р	Р	L	Mi	Mi	М	М	М	н
Engineering,										
Assets,	Damage to road and drain infrastructure due to									
Operations	increased intensity of rainfall events	Р	Р	Р	Mi	М	Μ	М	н	Н
							1			

	Openspace &	waterways folLing intense rainfall events									
ļ	Sustainability										
		Increased weed spread from flooding events lead to									
		increased costs of weed management and									
	Operations	revegetation	Р	Р	Р	М	М	М	Н	Н	Н
		Human health issues as a result of sewer inundation									
	Public Health	from more intense rainfall events	U	U	U	М	М	Μ	М	М	М
ſ		Potential increase in water borne viruses from									
	Public Health	pollution due to flooding.	U	Р	Р	М	М	M	М	н	н
ſ		Severe rainfall events overwhelm existing drains and									
	Engineering,	retarding basins causing overfL events, localised									
	Assets,	flooding, damage to infrastructure and environmental									
	Operations	contamination.	Р	L	С	М	Ma	Ma	н	E	E
ĺ	Leisure	Increased intensity of rainfall events leads to									
	Services	increased management and closure of sports grounds	U	U	U	In	Mi	Mi	L	L	L
ſ		Increased E weather events leads to more damaged									
		and fallen trees posing risk to safety, loss of services									
	Operations	and increased maintenance costs	Р	L	L	М	Ma	Ma	н	E	Е
ĺ	Human	Increased physical injuries to council staff from E									
	Resources	weather events	Р	Р	Р	М	М	Ma	н	н	E
ĺ	Building										
	Services &	Change to building and planning requirements due to									
	Planning	increased frequency and severity of E events	Р	Р	L	In	Mi	М	L	М	н
ĺ	Operations,	Increased cost of clean up and recovery from									
	Finance	increased frequency and severity of E weather events	L	L	L	Mi	М	Ma	М	н	Е
ĺ	Strategic										
	Planning &	Future liability from failure to account for climate									
	Sustainability	change in planning	U	U	U	Mi	М	М	L	М	М
İ		Increased infrastructure costs of alternative water									
	Operations	supply to deal with reduced water availability	U	Р	Р	Mi	Mi	М	L	М	н

	Hotter and drier conditions leads to loss of									
Bushland &	biodiversity reducing amenity and environmental									
openspace	values	Р	Р	L	Ma	Ma	Ma	E	E	E
Community	Reduced water availability leads to reduced regional									
Planning	food security	U	U	Р	М	Ma	Ma	м	н	E
	Reduced water availability leads to increased water									
Community	and fresh food costs leading to broad economic									
Planning	impacts on community	U	Р	Р	М	М	Ma	M	н	E
	Reduced soil moisture levels lead to increase soil									
	movement damaging underground infrastructure such									
Assets	as drains and building foundations	U	Р	Р	Mi	М	М	L	н	Н
Leisure	Drier and hotter conditions lead to increased									
Services,	hardening of sports grounds leads to Her rate of									
Operations	injuries	L	L	С	Mi	Mi	Mi	M	М	Н
	Reduced water availability leads to greater demand									
Finance	for and costs of irrigation	Р	L	L	М	М	М	Н	Н	Н
Sustainability	Inadequate alternative water supply for community									
&	and community concerns over water reuse and									
Engineering	storage	U	Р	Р	М	М	М	M	Н	Н
Public health	Increase in dust storms leading to public health issues	U	Р	L	М	М	М	М	н	н
	Lack of cleaning, flushing effect of waterways and									
Operations	roads due to reduced rainfall	Р	Р	L	Mi	М	М	M	н	Н
	Her fire risk requires greater management of interface									
Planning	between council reserves and private land	Р	Р	L	Mi	М	М	M	Н	Н
	Reduced water availability leads to Her tree mortality									
Operations &	and reduction in biodiversity leading to tree failure									
openspace	and less green areas	Р	L	L	М	М	М	н	Н	Н
	Damage to transport infrastructure during heatwaves									
	leading to Her maintenance and replacement costs									
Engineering	and mobility issues	Р	Р	Р	M	М	м	н	н	Н

	Increasing number of heatwaves impacts on										
	community leading to greater council demand on										
Public Health	support services	Р	L	L	М	Ma	Ma	н	E	Е	
	Increasing temperatures leads to increased energy										
	demand from cooling leading to Her financial costs										
Sustainability	and GHG emissions	Р	L	L	Ma	Ma	Ma	Е	E	E	
Community	Power and communication outages during heatwaves										
Services	leads to loss of council service ability	Р	Р	Р	М	М	Ma	н	н	E	
	Increasing temperatures lead to loss of biodiversity										
Operations	and increased environmental management costs	Р	L	L	М	М	Ma	н	н	E	
Community	Reduced council services during heatwave events										
Planning and	pose health risks to vulnerable members of										
Services	community	Р	Р	Р	М	М	Ma	н	н	Е	
	Heatwaves place greater demand on council										
Ma Leisure	swimming pools posing risks to staff and public safety	Р	Р	L	М	Ma	Ma	н	E	E	
Strategic											
Planning &	Her energy costs lead to reduced disposable income										
Sustainability	leading to regional economic sLdown	U	Р	Р	М	М	М	M	H	Н	
	Current building design standards not adequate for										
Planning	projected climate conditions	Р	L	L	Mi	М	Ma	M	H	E	
	Risk of mortality to vulnerable members of										
Public Health	community during heatwaves	Р	Р	L	Ma	Ma	Ma	Е	E	E	
Community											
Planning and	Increasing temperatures and hot days reduce mental										
Services	wellbeing in community	Р	L	L	Mi	Μ	М	M	H	Н	
	Increased odour and amenity complaints to council										
Public Health	due to rising temperatures and drier conditions	Р	Р	Р	In	In	In	L	L	L	
Finance &	Transport disruptions during E weather events lead to										
Governance	reduced staff able to attend work	Р	Р	Р	Mi	М	М	M	Н	Н	
Community	Hotter weather leading to greater likelihood of	Р	P		м	м	м	н	н	н	

Health	congregation of people leading to pandemics									
Services										
	Temperature increases leading to changes in pest									
Bushland	visitation ranges	U	U	Р	Ma	Ma	Ma	Н	Н	Е