EAGA & NAGA Building Vulnerability

Assessments

Assessment sheets

Issue | 20 October 2015

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number

Arup Arup Pty Ltd ABN 18 000 966 165

Arup
Level 17
1 Nicholson Street
East Melbourne VIC 3002
Australia
www.arup.com

Contents

			Page
1	Vulne	erability assessment method	1
	1.1	Introduction	1
	1.2	Applying the framework to your municipality	1
2	Steps	for undertaking an assessment	1
	2.1	Comprehensive assessment	1
	2.2	Targeted by building use	2
3	Impo	rtance of Functional Requirement to Building Use	3
4	Build	ing Component Assessment Sheets	4
	4.1	Thermal Comfort	6
	4.2	Indoor Air Quality	19
	4.3	Power	20
	4.4	Lifts	24
	4.5	Structural Performance	25
	4.6	Weather Proofing	39
	4.7	Fire Resistance	43
5	Priori	itised Vulnerabilities Action Sheet	44

EAGA & NAGA

1 Vulnerability assessment method

1.1 Introduction

The building vulnerability assessment approach developed for the City of Whitehorse by Arup provides Councils with a framework for understanding the potential climate vulnerability of their building stock and the services delivered from them, and for developing prioritised response plans.

This document provides a step-by-step guide to adapting and applying the framework, and options for how the framework can be used in a more targeted way if comprehensive assessments are beyond the available resources of Council.

1.2 Applying the framework to your municipality

This framework was developed for the City of Whitehorse in the east of Melbourne. As such, it is focused around the climate impacts and building types most relevant to that municipality. As such, when applying to other building types, or in other locations, further refinement may be required.

The framework is modular and can be expanded as follows:

- Review the list of functional requirements and building use types shown in Table 1.
 Confirm that they cover the full range that are relevant to your municipality, location
 and building. Functional requirements that are not currently covered by the
 framework, but which may be worth considering include communications and
 sanitation.
- For any additional functional requirements, identify the building components that contribute to providing them.
- For those building components, review potential direct and indirect climate change events to identify whether there is a potential impact pathway (i.e. a plausible way that the event could detrimentally effect the component and therefore the provision of any functional requirements reliant on that building component).
- Where an impact pathway is identified, develop an assessment sheet in the same style as the others contained in this guide. Consider the potential exposure and sensitivity of the component to the climate event. Seek expert opinion if you do not have the relevant expertise to complete this step.

2 Steps for undertaking an assessment

2.1 Comprehensive assessment

The following steps are the recommended way of using the framework, giving a more comprehensive picture of the building's vulnerabilities to climate events than the targeted approaches.

Assess all components for all potential climate impacts

Understand importance of functional requirements to building use

Estimate vulnerability

Develop prioritised actions

Figure 1 – Steps for a comprehensive assessment

- 1. Fill out the Building Component Assessment Sheets shown in Section 4.
 - a. On each sheet, answer the prompting questions related to *Exposure* and *Sensitivity* as best matches the building.
 - b. Use the highest exposure and sensitivity to determine the *Potential Impact Rating*.
 - i. If **all** aspects of exposure or sensitivity are not applicable, then select *Not Applicable* at the bottom of the page.
 - ii. If aspects of exposure or sensitivity are unknown, then select *Unknown* at the bottom of the page. The only exception is when one aspect is "unknown", but another has a "high" exposure or sensitivity. In this case, use the "high" to determine the impact rating, because it suggests that the component is already particularly exposed or sensitive to the climatic variable in question.
- 2. Identify the importance of *Building Functional Requirement* to Building Use.
- 3. Combine the *Potential Impact Rating* and the importance of *Building Functional Requirement* to Building Use to estimate the vulnerability rating.
- 4. Transfer the vulnerability ratings to the Prioritised Vulnerabilities Action Sheet. Arup recommends the following responses to the vulnerability scores:
 - a. "Very high" vulnerabilities should be considered further for priority capital works spending.
 - b. "High" and "medium" vulnerabilities be considered at times of refurbishment and replacement.
 - c. "Unknowns" should be investigated where practical. Alternatively, a conservative approach could be taken and assume the worst case for the unknown aspect.

| Issue | 20 October 2015 | Arup

EAGA & NAGA

Building Vulnerability Assessments

2.2 Targeted by building use

One way to prioritise assessments is to focus on those buildings and end-uses that are highly reliant on one or more functional requirements being provided at all times. For example:

- Power and water supply to emergency relief / recovery centres
- Cooling and lift access in aged care facilities
- Power supply and weather-proofing to data centres
- Weather-proofing to libraries, archives and heritage buildings

Note that this is not a comprehensive list.

Because of the high reliance of the building use on one or more functional requirements, a loss of that functional requirement is likely to have a significant impact and therefore should be addressed.

When undertaking an assessment targeted by building use, the steps listed for the comprehensive assessment can be re-ordered as shown in the

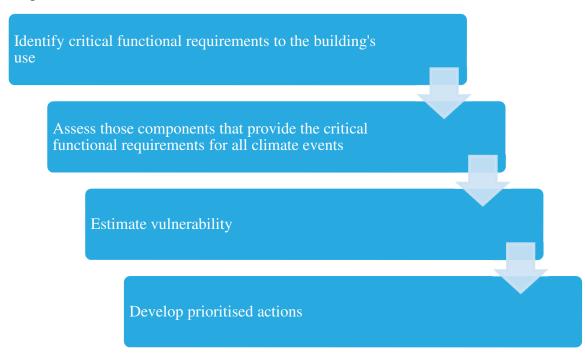


Figure 2 - Steps for an assessment targeted by building use

2.2.1 Targeted by climate event

A second way to strategically apply the framework is by focusing on climate events, such as those known to have caused issues in the past, occur most frequently, are the most severe, or are most different to historical records (and therefore may be exceeding current design standards). When used in this way, the framework is a tool to help understand potential impact pathways and identify appropriate responses.

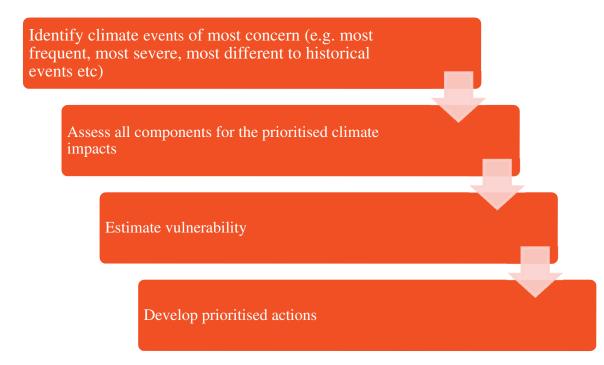


Figure 3 - Steps for an assessment targeted by climate event

| Issue | 20 October 2015 | Arup

| Issue | 20 October 2013 | Arup

3 Importance of Functional Requirement to Building Use

Council buildings are used to provide a wide range of services to the community. These uses and associated occupants have different abilities to cope with a disruption to building functions and these need to be considered when prioritising adaptation responses.

For example, buildings that are designated as emergency relief centres should be available during and immediately after critical events including those related to climate, such as storms and bushfire. A leisure centre, whilst a valuable community asset, does not have a critical role to play during a severe storm event and could therefore be given lesser importance than the emergency relief centres¹.

Table 1 provides examples of possible levels of importance of each functional requirement to the uses of the buildings assessed. The following text provides the rationale for these levels:

- Thermal comfort Thermal comfort is most important where the people or assets inside are particularly sensitive to extreme temperatures, for example the elderly or young children. At the other end of the scale are buildings where users have lower expectations for thermal comfort and/or users have greater ability to manage their own comfort in terms of how they dress, how strenuously they exert themselves, moving to a cooler location for breaks, and their intake of fluids for example workshops, garages and leisure centres.
- Air quality Air quality is most important where the people inside are particularly sensitive to drops in air quality, for example infants and the elderly.
- Power Electricity is important for the functioning of most buildings; however, the ability
 for a building use to accept or manage a loss of power varies. Buildings that have
 emergency functions should be available for use during and immediately after critical
 events, which could include climate-related events such as storms. Other buildings that
 may have high reliance on power are those with a critical business function.
- Access (lifts) The lifts increase accessibility of buildings to those whose mobility is restricted. This means that for buildings with a significant proportion of occupants with restricted mobility (e.g. the elderly), a short-term loss of the lifts have higher importance than those without.
- Structural performance Because all building uses require structural performance, the importance of structural performance depends more on the potential impact than it does on the building use. The impact pathways related to structure have been divided into three categories. The first is *damage*, which includes cosmetic cracking, sagging, and doors and windows jamming. This is given a medium importance for all buildings. The second is *damage with significant secondary impacts*, which includes cracking in basements (which could lead to water ingress) and damage to retaining walls. This is given a high ranking. The third category is *failure*, which includes roof sheeting tearing off or structures collapsing. This is also given a high ranking.

- Weather proofing Weather proofing (primarily related to water ingress) is most important where the assets in the building are particularly susceptible to damage and / or costly to repair, such as libraries, galleries and spaces with lots of electronic equipment.
- Fire resistance The importance of fire resistance for a particular building is related to whether the building is likely to be occupied during periods of fire risk, the impact of the asset being unavailable after a fire, and the cost to repair / rebuild the asset if damaged by fire. These need to be considered carefully for the specific building being assessed.

Table 1. Importance of Functional Requirement to Building Use (*Note – these are not absolute or fixed – they should be reviewed and adjusted as appropriate in the context of the specific building and service delivery being assessed*)

		Importance of function to building use							
Building use	Thermal comfort	Air quality	Power	Access (lifts)	Structural performance	Weather resistance	Fire resistance		
Town Hall	Medium	Medium	Medium	Medium		Medium			
Administrative offices	Medium	Medium	High	Medium	Immortance for	Medium	The importance		
Library	Medium	Medium	Medium	Medium	Importance for all buildings is based on	High	of fire resistance for a		
Gallery	Medium	Medium	Medium	Medium	potential impact:	High	particular building is related to		
Theatre / performing arts centre	Medium	Medium	Medium	NA	Damage (e.g. cracking, sagging, doors / windows	Medium	whether the building is likely to be occupied during periods of fire risk, the impact of the		
Age care facility	High	High	High	High	jamming) – Medium	Medium			
Council Depot	Medium (office) Low (workshops)	Medium	High	NA	Damage and significant secondary impacts (e.g. cracking in	Medium	asset being unavailable after a fire, and the cost to repair /		
Leisure Centre	Low	Medium	Medium	Medium	basements, damage to retaining walls)	Medium	rebuild the asset if		
Sport oval and pavilions	Medium	Medium	Medium	Low	- High	Medium	damaged by fire. These need to be		
Childcare centre	High	High	Medium	Low	Failure (e.g. roof sheeting tearing off) – High	Medium	considered carefully for the specific building		
Emergency relief / recovery centre	Medium	Medium	High	Medium	Tingii	High	being assessed.		

¹ It should be noted that the importance could change in the future if disruptions became more frequent. For example, a loss of power at the leisure centre once a year may be acceptable, but 10 times per year may not. | | Issue | 20 October 2015 | Arup

4 Building description

When undertaking as assessment, it is helpful to record the relevant contextual information that fed into the assessment, as well as the specific technical details captured by the component assessment sheets.

The following table suggests relevant information that should be recorded as part of the assessment.

Building name	
Location / address	
Image	
Primary uses of building (including emergency uses if relevant)	
Typical users of building (including emergency uses if relevant)	

5 **Building Component Assessment Sheets**

The Building Component Assessment Sheets are grouped by Functional Requirement and presented in the following order.

Functional Requirement	Ref.	Building component	Climatic changes with the potential to damage the building component and disrupt the building function		
	TC 1	Cooling equipment	Hotter extreme temps / More frequent days > critical temp		
	TC 2	Cooling by natural ventilation	Hotter extreme temps / More frequent days > critical temp Warmer average day / night temperatures		
	TC 3	Cooling equipment	Hotter extreme temps / More frequent days > critical temp Warmer average day / night temperatures		
	TC 4	Cooling equipment	Higher wind speeds / more frequent winds > critical speed		
	TC 5	Cooling equipment	Heavier rainfall		
	TC 6	Heating	Higher wind speeds / more frequent winds > critical speed		
	TC 7	Heating	Heavier rainfall		
Thermal comfort	TC 8	Roofs	Hotter extreme temps / More frequent days > critical temp Warmer average day / night temperatures		
	TC 9	External walls	Hotter extreme temps / More frequent days > critical temp Warmer average day / night temperatures		
	TC 10	Windows / doors	Hotter extreme temps / More frequent days > critical temp Warmer average day / night temperatures		
	TC 11	Roofs	Hotter extreme temps / More frequent days > critical temp Warmer average day / night temperatures		
	TC 12	External walls	Hotter extreme temps / More frequent days > critical temp Warmer average day / night temperatures		
	TC 13	Windows / doors	Hotter extreme temps / More frequent days > critical temp Warmer average day / night temperatures		

Functional Requirement	Ref.	Building component	Climatic changes with the potential to damage the building component and disrupt the building function		
Indoor air quality	IAQ 1	Ventilation	Higher wind speeds / more frequent winds > critical speed		
	P 1	Electricity - grid	Extreme weather		
	P 2	Electricity – building	Higher wind speeds / more frequent winds > critical speed		
Power	P 3	Electricity – building	Hotter extreme temps / More frequent days > critical temp		
	P 4	Electricity - building	Heavier rainfall		
Access (lifts)	L 1	Lifts	Hotter extreme temps / More frequent days > critical temp		
	SP 1	Foundations and ground slabs	Hotter extreme temps / More frequent days > critical temp Heavier rainfall		
	SP 2	Foundations	Hotter extreme temps / More frequent days > critical temp Lower average rainfall		
	SP 3	Foundations	Higher wind speeds / more frequent winds > critical speed		
	SP 4	Retaining / SPte walls	Heavier rainfall		
	SP 5	Basement wall	Heavier rainfall		
	SP 6	Roof structure	Heavier rainfall / more		
	SP 7	External walkways / balconies	Heavier rainfall		
Structural performance	SP 8	Roof structure	Higher wind speeds / more frequent winds > critical speed		
	SP 9	Roof, floor and wall structures	Higher wind speeds / more frequent winds > critical speed		
	SP 10	Miscellaneous / lightweight structures	Higher wind speeds / more frequent winds > critical speed		
	S1 11	Walls	Higher wind speeds / more frequent winds > critical speed Heavier rainfall		
	SP 12	Windows / doors	Higher wind speeds / more frequent winds > critical speed Heavier rainfall		
	SP 13	Walls	Hotter extreme temps / More frequent days > critical temp		
	SP 14	Windows / Doors	Hotter extreme temps / More frequent days > critical temp		

Functional Requirement	Ref.	Building component	Climatic changes with the potential to damage the building component and disrupt the building function
	WP 1	External walls, windows or doors	Heavier rainfall
Weather proofing	WP 2	Roofs	Heavier rainfall
proofing	WP 3	External walls	Heavier rainfall
	WP 4	Windows / doors	Heavier rainfall
Fire resistance	FR 1	Whole building	Increased risk of bushfires

5.1 Thermal Comfort

Building name:					
Date:		Building no. / ref:			
Cooling equipment Thermal comfort			TC1		
Climate disturbance	ures)				
	Overheating of internal spaces				
Impact pathway	Higher maximum outside air temperatures are likely system. This could occur due to heat transfer through and due to the outside air that may be supplied by the that mechanical cooling equipment may reduce in comaximum operating temperature. On extreme days, to available, or in a worst case, being not available at all	n the building envelope (assessed se e air conditioning system. A second coling capacity in hotter weather up this could lead to insufficient cooling	eparately) lissue is to a		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Where are the outside air intakes located?	No outside air brough the air conditioning system.	Outside air intakes on the shaded side of the building Outside air intakes near a cool microclimate (e.g. Lush green landscaping)		Outside air intakes located near a hot microclimate (sunny side of the building, dark hard surfaces)
E2	rejection	meretore no neat	Located in a cool, shaded spot		Heat rejection equipment located in direct sun

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	С
S1	proportion of	No outside air brought in through the air conditioning system.	Minimum outside air rate, driven by heat loads rather than occupancy (typical of spaces with few people e.g. open offices). Naturally ventilated.		HVAC system has a high proportion of outside air (typical in densely occupied spaces, e.g. theatres, meeting rooms)
S2	What sort of cooling system does the space have?	No cooling equipment.		Air-cooled with a high maximum operating temperature (e.g. >46 deg C) Water-cooled system	Air-cooled with a low maximum operating temperature (e.g. <46 deg C), or Evaporative, or Unknown

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating							
Not applicable (N/A)	Unknown (U)		Exposure				
_		1	2	3			
Sensitivity	A	Low	Medium	Medium			
nsit	В	Medium	Medium	High			
Š	C	Medium	High	High			

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)				
		Low	Medium	High		
Importance of	Low	Low	Low	Medium		
Building Function to Building Use (refer	Medium	Low	Medium	High		
Table 1)	High	Medium	High	Very high		

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Cooling by natural	ventilation	Thermal comfort	TC2		
Climate disturbance	High temperature and higher night time temperatures	S	•		
	Overheating of internal spaces				
Impact pathway	During periods of extreme high temperature, naturally ventilated spaces tend to rely on thermal mass (e.g. exposed concrete or brick) and flushing with cool night air to remain cool during the day. If night time temperatures are high, it becomes very difficult to cool the thermal mass. If this happens for successive days, the internal temperature will rise.				

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
	ventilation	Building uses air conditioning equipment	Outside air intakes on the shaded side of the building Outside air intakes near a cool microclimate (e.g. Lush green landscaping)		Outside air intakes located near a hot microclimate (sunny side of the building, dark hard surfaces)
E2	night? (i.e. is	Building uses air conditioning equipment		by natural landscaping	Building is surrounded by hard surfaces (e.g. Asphalt, concrete, brick or stone)

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	С
S1	innenings nave to	Building uses air conditioning equipment	Openings can be closed during the day to reduce the amount of heat getting into the occupied space		Openings have to be open during the day to help maintain indoor air quality
S2		Building uses air conditioning equipment	Large amounts of internally exposed thermal mass (i.e. exposed brick or concrete in the occupied space)		Little internally exposed thermal mass (i.e. Not much exposed brick or concrete in the occupied space)

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact	Potential Impact Rating						
Not applicable (N/A)	Unknown (U)	wn (U) Exposure					
		1	2	3			
Sensitivity	A	Low	Medium	Medium			
nsiti	В	Medium	Medium	High			
Se	C	Medium	High	High			

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of	Low	Low	Low	Medium
Building Function to Building Use (refer	Medium	Low	Medium	High
Table 1)	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Cooling equipment		Thermal comfort	TC3		
Climate disturbance	More frequent high temperatures				
	Increased wear and tear, higher running costs, higher carbon emissions				
Impact pathway	More frequent high temperature is likely to mean that mechanical cooling equipment is running at capacity or near capacity for more hours per year. This may increase the wear and tear on the equipment, and is likely to also lead to higher running costs and carbon emissions.				

Step 1: answer the questions related to exposure below.

	Exposure of the system or element	Not applicable	1	2	3
E1	outside all	No outside air brought in through the air conditioning system.	Outside air intakes on the shaded side of the building or near near a cool micro- climate (e.g. Lush green landscaping)		Outside air intakes located near a hot microclimate (sunny side of the building, dark hard surfaces)
E2	Where is heat rejection equipment located?	Naturally ventilated	Located in a cool, shaded spot		Heat rejection equipment located in direct sun

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	the higher	No outside air brought in through the air	Minimum outside air rate, driven by heat loads rather than occupancy		HVAC system has a high proportion of outside air (typical in densely occupied spaces)
S2	0	Internal space (i.e. No external walls or roof).	Very well insulated building envelope		Large areas of single glazing Poorly insulated roof and walls
S3	tne nigner	external walls or	Well sealed building, demonstrated via building air tightness testing	Air lock at front door. No visible gaps.	No airlock, door often open. Visible gaps around doors and/or windows. Visible gaps in walls and/or roofs.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A)	Unknown (U)	Exposure				
		1	2	3		
ivity	A	Low	Medium	Medium		
nsiti	В	Medium	Medium	High		
Sen	C	Medium	High	High		

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of	Low	Low	Low	Medium
Building Function to Building Use (refer	Medium	Low	Medium	High
Table 1)	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Cooling equipmen	nt	Thermal comfort TO			
Climate disturbance Extreme wind					
	Physical damage of external plant or equipment				
Impact pathway	Extreme wind could damage external plant or equipment a split system condenser unit off the roof, or indirect tree onto the equipment. In either case, the damage nonditioning system. Extreme winds tend not to coimmain issue will be the potential cost and disruption as	ly, for example by blowing a bra nay be sufficient to disable the a ncide wtih extreme, temperature	anch from a ir- , so the		

Step 1: answer the questions related to exposure below.

	Exposure of the system or element	Not applicable	1	2	3
E1	rejection	therefore no	Indoors (e.g. Plant room) or a well sheltered location	Through the wall	Roof mounted in an open location
E2	Are there trees near-by that could cause damage?		Built up area, or cleared (i.e. No trees)	Some trees	Large trees, known to drop branches or have shallow roots, or overhanging branches

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	С
S1	Is the equipment easy to move, or in the likely fall line of branches?	system.	Well-fastened to a rigid	Fastened, but poorly, or with obvious damage or corrosion to the fastenings	Domestic scale condenser unit for a split system or domestic scale evaporative cooler, not fastened to a rigid structure Located very near overhanging braches.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Ratin	Potential Impact Rating					
Not applicable (N/A)	Unknown (U)	Exposure				
		1	2	3		
ivity	A	Low	Medium	Medium		
Sensiti	В	Medium	Medium	High		
Se	C	Medium	High	High		

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Po	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High	
	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Cooling equipment		Thermal comfort	TC5		
Climate disturbance	Extreme rain				
	Physical damage of external plant or equipment				
Impact pathway Extreme rain could result in localised flooding or flash flooding, which could in turn conditioning plant or equipment. Extreme rain tends not to co-incide with extreme, to so the main issue will be the potential cost and disruption associated with rectifying an extreme rain could result in localised flooding or flash flooding, which could in turn conditioning plant or equipment. Extreme rain tends not to co-incide with extreme, to so the main issue will be the potential cost and disruption associated with rectifying an extreme rain could result in localised flooding or flash flooding, which could in turn conditioning plant or equipment.					

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
	Is the building in a flood prone area?			Flood prone investigation area	Flood basin

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	rejection	inereiore no	Roof mounted or high on a wall		Outside in a low-lying area

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A)	Unknown (U)	Jnknown (U) Exposure				
		1	2	3		
Sensitivity	A	Low	Low	Medium		
nsiti	В	Low	Medium	High		
Se	$\overline{\mathbf{C}}$	Medium	High	High		

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High	
	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Heating equipment Thermal comfort		Thermal comfort	TC6		
Climate disturbance Extreme wind					
	Physical damage of external plant or equipment				
Impact pathway	Extreme wind could damage external plant or equipment off the roof, or indirectly, for example by equipment. In either case, the damage may be suffici winds could co-incide with cold temperatures, so the of the disruption.	blowing a branch from a tree onto ent to disable the heating system. E	the Extreme		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Where is the heating equipment located?		Indoors (e.g. Plant room) or a well sheltered location	Through the wall	Roof mounted in an open location
E2	Are there things near-by that could cause damage?		Built up area, or cleared (i.e. No trees)	Some trees	Large trees, known to drop branches or have shallow roots, or overhanging branches

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1		No air conditioning system.	Well-fastened to a rigid	Fastened, but poorly, or with obvious damage or corrosion to the fastenings	Domestic scale condenser unit for a split system or domestic scale evaporative cooler, not fastened to a rigid structure Located very near overhanging braches.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating				
Not applicable (N/A)	Unknown (U) Exposure			
		1	2	3
vity	A	Low	Medium	Medium
Sensiti	В	Medium	Medium	High
Se	C	Medium	High	High

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Po	Potential Impact Rating (from previous step)				
		Low	Medium	High		
Importance of	Low	Low	Low	Medium		
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High		
	High	Medium	High	Very high		

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Heating equipmen	nt	Thermal comfort	TC7		
Climate disturbance	Extreme rain	•			
	Physical damage of external plant or equipment				
	Extreme rain could result in localised flooding or flash flooding, which could in turn damage heating plant or equipment. Extreme rain could co-incide with cold weather, so there may be a need for heating at the time of the disruption.				

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Is the building in a flood prone area?			Flood prone investigation area	Flood basin

Step 2: answer the questions related to sensitivity below.

	Sensitivity of the system or element	Not applicable	A	В	C
S1	Where is the heat equipment located?		Roof mounted or high on a wall		Outside in a low-lying area

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A)	Unknown (U)	Exposure			
		1	2	3	
vity	A	Low	Low	Medium	
Sensitivity	В	Low	Medium	High	
Se	C	Medium	High	High	

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High	
	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no.	/ ref:		
Facade – roof		Thermal comfort	TC8		
Climate disturbance	Extreme temperature + Warmer temperatures				
Impact pathway	outside of the building can enter the building are highly conductive, such as metals, will quickly than timber. A thermal barrier, such can affect the ability of building services (r				

Step 1: answer the questions related to exposure below.

Re	Exposure of the system or element	Not applicable	1	2	3
E1	Is the roof exposed to outside air & heat	No			Yes

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
18.1	Is the roof and/or ceiling insulated?	insulation to current	with some insulation; R-value between 1.5	and/or bubble wrap with	No insulation present within roof or ceiling system
S2	Is the roof space ventilated to the exterior?	1	Roof space is not ventilated and roof is fully insulated. Roof space ventilated to exterior with ceiling insulated		Roof space ventilated to exterior with no ceiling insulated

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A) Unknown (U)			Exposure			
		1	2	3		
Sensitivity	A	Low	Low	Low		
B B		Medium	Medium	Medium		
Se	C	Medium	High	High		

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High	
	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:			
Date:		Building no. / ref:	
Facade – exterior	walls	Thermal comfort	TC9
Climate disturbance	Extreme temperature + Warmer temperatures		
Impact pathway	Direct heat + heat transfer Heat transfer occurs through the walls from he building can enter the building via conduction conductive, such as metals, will transfer heat t timber. A thermal barrier, such as insulation, r ability of building services (mechanical equipo Occupant comfort & health can be a concern of	through materials; materials that are to the interior of buildings more quick nitigates such heat transfer This can ment) to cool interior spaces (assessed	highly ly than affect the

Step 1: answer the questions related to exposure below.

	Exposure of the system or element	Not applicable	1	2	3
E1	What is the orientation of the walls?		Walls face South & protected from warmer air.	Walls face East; cooler during afternoon.	Walls face North and West; air generally hot adjacent to walls.
E2	Is there adjacent vegetation to the walls?		Dense tall trees & vegetation maintain cooler temperatures.	gardens adjacent to	No trees or thick garden/ vegetation are present near walls.
E3	What is the microclimate around the walls during hot days?		Walls adjacent to cool bodies of water& thick vegetation; generally air is cooler.	2pm. Mostly grass or light	Air adjacent to walls is hot throughout the day. Hard and dark coloured surfaces adjacent to walls.

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S 1	Is there insulation within the walls?		with compliant insulation to current code (NCC 2012 - 2.8	Walls are heavy masonry with no insulation. Some insulation with an R-value of 1.0	No insulation
S2	wnat is the wall	New or old building with wall insulation; refer to above.	framing with interior finish (e.g.plasterboard) Concrete, block, or brick	piasterboard).	Metal sheet only; no finish on interior.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A) Unknown (U)		Exposure			
>	1	2	3		
Ä A	Low	Low	Low		
Sensitivity B C	Medium	Medium	Medium		
\mathbf{z} C	Medium	High	High		

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer	Medium	Low	Medium	High	
Table 1)	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Facade – windows	s / doors	Thermal comfort	TC10		
Climate disturbance	Extreme temperature + Warmer temperatures		•		
	Direct heat + heat transfer				
Impact pathway	Heat transfer occurs through windows and doors from hot to cool spaces. Hot weather on the outside of the building can enter the building via conduction through materials; materials that are highly conductive, such as aluminium frames, will transfer heat to the interior of buildings more quickly than timber. A thermal barrier, such as insulation, mitigates such heat transfer. This can affect the ability of the building services (mechanical equipment) to cool interior spaces (assessed separately). Occupants and services adjacent to the facade will experience increased temperatures of the internal ambient air. Proper seals mitigate infiltration occurrences.				

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	What is the orientation of the building?		Windows/doors face South & protected from warmer air.	Windows/doors face East; cooler during afternoon.	Windows/doors face North and West; air generally hot adjacent to walls.
E2	Is there adjacent vegetation to the building?		Dense, tall trees & vegetation maintain cooler temperatures.	Some trees & thick gardens adjacent to windows/doors.	No trees or thick garden/ vegetation are present near windows/doors.
E3	What is the microclimate around the building?		Windows/doors adjacent to cool bodies of water& thick vegetation; generally air is cooler.		Air adjacent to walls is hot throughout the day. Hard and dark coloured surfaces adjacent to windows/doors.

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	С
S 1	What is the type of windows?		units or double glazing with thermally broken metal or timber frames. Old insulated glass units	metal frames. Single glazed with	Single pane of glass with metal frames.

		New insulated doors	Metal doors with double glazing	
100	What is the type of doors?	Metal solid	Metal solid doors	Single glazed doors with no airlock
			Single glazed doors	
			with air lock	

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A) Unknown (U)		Exposure			
		1	2	3	
Sensitivity	A	Low	Low	Low	
nsiti	В	Medium	Medium	Medium	
Se	C	Mediu <mark>m</mark>	High	High	

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Potential Impact Rating (from previous step)				
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer	Medium	Low	Medium	High	
Table 1)	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:			
Date: Building no. / ref:		uilding no. / ref:	
Facade – roof		Thermal comfort	TC11
Climate disturbance Extreme temperature + Warmer temperatures			
	Infiltration of hot air to the interior		
Impact pathway	Air infiltration occurs between hot (high pressure) to on the outside of the building can enter the building to This can affect the ability of the building services (mespaces. Occupants and services adjacent to the facade the internal ambient air. Proper seals mitigate infiltrator The term penetration includes pipes, vents, mechanic references the material between the roof and the penetration.	hrough holes and/or gaps in the face echanical equipment) to cool interior will experience increased tempera- tion occurrences. al equipment, windows and doors.	ade. or tures of

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	What is the orientation of the roof?		from prevailing winds or	from hot summer	Faces North towards prevailing hot summer winds
E2	What is the height of the building in relation to its surroundings?		Building is shorter than the height of adjacent buildings and dense	building is exposed above the height of adjacent buildings and	Greater than 1/3 of the building is exposed above the height of adjacent buildings and dense vegetation.

Step 2: answer the questions related to sensitivity below.

	Sensitivity of the system or element	Not applicable	A	В	C
S1	Are there gaps in roof system / penetrations?		Some penetrations through roof with seals.	motorials areating fine	Roof has large vent gaps & holes; daylight visible from interior
S2	What is the roof composition?			Metal sheet, tile or slate.	
S3	What is the roof slope			Roof pitch is greater than 5°	

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A)	Unknown (U)	Exposure			
		1	2	3	
vity	A	Low	Low	Low	
Sensitivity	В	Medium	Medium	Medium	
Se	C	M <mark>edium</mark>	High	High	

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of Building Function to Building Use (refer Table 1)	Low	Low	Low	Medium	
	Medium	Low	Medium	High	
	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:	В	Building no. / ref:			
Facade – exterior walls Thermal comfort		Thermal comfort	TC12		
Climate disturbance	Extreme temperature + Warmer temperatures				
	Infiltration of hot air to the interior				
Impact pathway	Air infiltration occurs between hot (high pressure) to on the outside of the building can enter the building This can affect the ability of the building services (n spaces. Occupants and services adjacent to the facad the internal ambient air. Proper seals mitigate infiltration	through holes and/or gaps in the fa nechanical equipment) to cool inter le will experience increased temper	cade. ior		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	What is the orientation of the wall?		prevailing winds or is		Faces North towards prevailing hot summer winds
E2	Is there surrounding elements that shield the building facade?		proximity, less than 5m away from the facade	buildings exist in relative proximity less than 2 x the building	No trees or adjacent buildings within proximity of greater than 2 x the height of the facade.

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	What is the condition of the seal between the wall & penetration?	No penetrations	Old continuous sealant	Sealant or gaskets have gaps, are cracked and/or loose.	
S2	What is the type of seals?	,	Gasket or sealant with some cracks or gaps		No seal around penetrations.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A)	Unknown (U)	Exposure			
		1	2	3	
vity	A	Low	Low	Low	
Sensitivity	В	Medium	Medium	Medium	
Se	C	Medium	High	High	

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Po	Potential Impact Rating (from previous step)				
		Low	Medium	High		
Importance of	Low	Low	Low	Medium		
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High		
	High	Medium	High	Very high		

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:				
Date:		uilding no. / ref:	•	
Facade – windows / doors		Thermal comfort	TC13	
Climate disturbance	Extreme temperature + Warmer temperatures		-	
	Infiltration of hot air to the interior			
Impact pathway	Air infiltration occurs between hot (high pressures) to on the outside of the building can enter the building t windows and doors. This can affect the ability of the to cool interior spaces. Occupants and services adjace temperatures of the internal ambient air. Proper seals Isolated to window and door elements only – seals be assessed in the infiltration of walls sheet.	through holes and/or gaps around or building services (mechanical equi- ent to the facade will experience in mitigate infiltration occurrences.	or in ipment) creased	

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	What is the orientation of the windows / doors?		Windows/doors are oriented away from prevailing winds or is within a protected internal courtyard		Windows/doors North towards prevailing hot summer winds
E2	Is there surrounding elements that shield the building facade?		proximity, less than 5m away from the facade	buildings exist in relative proximity less than 2 x the building	No trees or adjacent buildings within proximity of greater than 2 x the height of the facade.

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	Do windows and doors have seals?		condition to perimeter of operable windows/doors; no	perimeter of windows/doors; daylight visible and/or	Brush gasket to portion of perimeter& draughts felt. No seals.
S2	window or door	Fixed window (in operable)	Doors open outwards. Windows are awning or casement with locking	Doors slide open with airlock. Windows are sliders or single/double hung	Doors slide open without airlock. Louvre windows; fixed or operable Garage door

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating				
Not applicable (N/A)	Unknown (U)	own (U) Exposure		
		1	2	3
vity	A	Low	Low	Low
Sensitivity	В	Medium	Medium	Medium
Se	C	Medium	High	High

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)				
		Low	Medium	High		
Importance of	Low	Low	Low	Medium		
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High		
	High	Medium	High	Very high		

Step 5: Copy high and very high vulnerabilities into Table 2.

5.2 Indoor Air Quality

Building name:					
Date: Building no. / ret					
Ventilation		Indoor air quality	IAQ1		
Climate disturbance	High wind speeds				
	Poor indoor air quality				
Impact pathway	One of Melbourne's sources of air pollution is dust sites) or macro sources such as the Wimmera and winds could result in more airborne dust, which co	Mallee regions of Victoria. More ext	reme		

Step 1: answer the questions related to exposure below.

Exposure of the system or element	Not applicable	1	2	3
Where are the outside air intakes or ventilation openings located?	No outside air brought in through the air conditioning system, or natural ventilation openings.	Near sealed or landscaped area.	Near dirt, sand or gravel area	

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	What sort of ventilation system does the space have?	i trom olitside	Air conditioning system with high efficiency filters	either air-conditioning	Natural ventilation (unfiltered – e.g. open window)
S2	Can outside air leak into the space?	IWell sealed huilding	Air lock at front door. No visible gaps.	No airlock, door often open. Visible gaps around doors and/or windows. Visible gaps in walls and/or roofs.	

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact	Rating			
Not applicable (N/A)	Unknown (U)	Exposure		
		1	2	3
vity	A	Low	Medium	Medium
Sensitivity	В	Medium	Medium	High
Se	C	Medium	High	High

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer	Medium	Low	Medium	High	
Table 1)	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

5.3 Power

Building name:			
Date:		Building no. / ref:	
Electricity – grid		Power	P1
Climate disturbance	Electricity grid outage due to extreme weather (wind	, rain, temperature etc)	-
Impact pathway	Loss of electricity to the building An increasing frequency of extreme events could inc electricity utilities have a responsibility to meet their	1 0	
	control over how successfully the utilities do this. As buildings and council services are vulnerable to power	s such, Councils should determine	

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	How many points of electrical connection are there to the site (from different zone substations)?	No electricity required from the grid	More than one		One

Step 2: answer the questions related to sensitivity below.

	Sensitivity of the system or element	Not applicable	A	В	C
S1	mower te o ties	No electricity required	Back-up power available on site	Connections in the main switchboard to enable connection of temporary back-up power	No back-up power

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating				
Not applicable (N/A)	Unknown (U)	Exposure		
		1	2	3
vity	A	Low	Medium	Medium
Sensitivity	В	Medium	Medium	High
Se	C	Medium	High	High

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer	Medium	Low	Medium	High	
Table 1)	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:				
Date: Electricity – building		Building no. / ref:		
		Power	P2	
Climate disturbance	Extreme wind			
	Damage to incoming power supply			
	Extreme wind could damage external equipment or cabling for example by blowing a from a tree onto it. This could result in a loss of power to the building.			

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
F1	Are there things near-by that could cause damage?		Built up area, or cleared (i.e. No trees)	Some trees	Large trees, known to drop branches or have shallow roots

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	Where is the main supply to the building located?	Underground		IHVNOCED OF NICH LEVEL	Exposed, near overhanging branches

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Ratir	otential Impact Rating					
Not applicable (N/A)	e Unknown (U) Exposure					
		1	2	3		
ivity	A	Low	Medium	Medium		
Sensiti	В	Medium	Medium	High		
Š	C	Medium	High	High		

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High	
	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Date: Electricity – building		Building no. / ref:			
		Power	Р3		
Climate disturbance	Extreme high temperature	,	•		
· ·	Loss of electricity to the building, damage to building, fire risk Electrical systems are designed to operate in specified ambient temperatures. In the current version of AS3000, the Australian wiring rules, the nominated temperature is 40 deg C. At higher temperatures, the electrical resistance of metals increases, meaning that cables become less efficient at carrying electricity (i.e. more energy is dissipated as heat). In extreme situations, the combination of high ambient temperature and increased heat losses could damage the cable insulation. Electrical cabling and infrastructure that is in naturally ventilated locations could be vulnerable on days of extremely high temperature.				

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Where are the main electrical switchboard and cables located?	Inside the building	(e.g. Concrete or brick)	North / west side of the building, in direct sun, but inside a covered area with good thermal mass (i.e. Concrete or brick)	North or north west side of the building, in direct sun

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	What is the age / condition of the main switchboard and cabling?	No electricity required from the grid	New switchboard and cabling, in excellent condition	Medium condition	Old switchboard and/or cabling in poor condition

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Not applicable (N/A)	Unknown (U)		Exposure		
		1	2	3	
Ŕ	A	Low	Medium	Medium	
Sensitivity	В	Medium	Medium	High	
Sens	C	Medium	High	High	

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Po	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High	
	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:				
Date:		Building no. / ref:		
Electricity – buildin	g	Power	P4	
Climate disturbance	Extreme rain	•		
	Physical damage of external plant or equipment			
Impact pathway	Extreme rain could result in localised flooding or flash flooding, which could in turn damage electrical equipment.			

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Is the building in a flood prone area?			Flood prone investigation area	Flood basin

Step 2: answer the questions related to sensitivity below.

	Sensitivity of the system or element	Not applicable	A	В	C
S1	Where is the sub- station main switchboard located?		Above ground level	Ground level	Basement

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact	Rating			
Not applicable (N/A) Unknown (U) Exposure				
		1	2	3
vity	A	Low	Low	Medium
Sensitivity	В	Low	Medium	High
Se	C	Medium	High	High

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Potential Impact Rating (from previous step)			
		Low	Medium	High
Importance of Building Function to Building Use (refer	Low	Low	Low	Medium
	Medium	Low	Medium	High
Table 1)	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

5.4 Lifts

Building name:			
Date:		Building no. / ref:	
Access (lifts)		Lifts	L1
Climate disturbance	Extreme temperature		-
Impact pathway	Overheating of lift motors, leading to failure Electric motors are design to work up to a recommer 40°C. At higher temperatures, the electrical resistance become less efficient at carrying electricity (i.e. more situations, the combination of high ambient temperate the cable insulation. Electrical cabling and infrastruc could be vulnerable on days of extremely high temperate	the of metals increases, meaning that e energy is dissipated as heat). In a ture and increased heat losses coul cture that is in naturally ventilated	at cables extreme d damage

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Where is the lift motor room located?	No lift	On the south side of the building, in a well insulated enclosure	on the south side of the	In direct sun, in a poorly insulated enclosure

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	С
S 1	How is the lift motor room cooled?	No lift	Air conditioned		Natural ventilation

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact	Rating			
Not applicable (N/A)	Unknown (U)		Exposure	
		1	2	3
vity	A	Low	Medium	Medium
Sensitivity	В	Medium	Medium	High
Se	\mathbf{C}	Medium	High	High

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of Building Function to Building Use (refer Table 1)	Low	Low	Low	Medium
	Medium	Low	Medium	High
	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

5.5 Structural Performance

Building name:			
Date:		Building no. / ref:	
Foundations and ground slabs Structural perfe		Structural performance	SP1
Climate disturbance	Extreme Rainfall		•
Impact pathway	of soils. The shrinking and swelling o of foundations and ground slabs. Settl	scessive rainfall can contribute to near surface shrin f soils can cause settlement or heave (upward move lement and heave of ground slabs may cause cracking viceability issue. Settlement and heave of foundation ove the ground (serviceability issue).	ement) ng of

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Soil Profile (Assumes basaltic clay over rock in climatic zone 2 as defined by AS2870)			Clay at depth up to 1.5m OR gravelly or coarse sandy clay	Clay depth greater than 1.5m.

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	What type of foundation?		Deep foundations (concrete piles) Raft foundation with deep perimeter beams and surrounding areas paved	IShallow footings	Foundations not tied together through grade beams or thickened slab elements.
S2	Superstructure typology		Steel or concrete frame		Masonry walls without movement joints. Timber framed structure.
S3	Construction typology of ground slab?		Concrete ground slab with control joints.		Concrete ground slab without control joint. Some evidence of cracking / differential settlement apparent.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact	Rating			
Not applicable (N/A)	Unknown (U)		Exposure	
		1	2	3
Sensitivity	A	Low	Medium	Medium
nsit	В	Medium	Medium	High
Se	C	Medium	High	High

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Potential Impact Rating (from previous step)			
		Low	Medium	High
Importance of Building Function to Building Use (refer Table 1)	Low	Low	Low	Medium
	Medium	Low	Medium	High
	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:			
Date:		Building no. / ref:	
Foundations		Structural performance	SP2
Climate disturbance	Decreased Average Rainfall & Extreme/Increased	Temperatures	
	Settlement of Foundation		
Impact pathway	Drying of soil is likely due to decreased average range sustained dryness may lead to lowering of the ground of foundations due to changing soil conditions.		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Soil Profile (Assumes basaltic clay over rock in climatic zone 2 as defined by AS2870)				Clay depth greater than 1.5m.
E2	Location of ground water, Presence of historical streams/rivers		Ground water table well below foundation level		

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S 1	What type of foundation?		-	Shallow footings, Concrete or brick	
S2	Superstructure typology		Steel or concrete frame	Timber frame	Masonry walls without movement joints.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A)	Unknown (U)		Exposure		
		1	2	3	
ivity	A	Low	Medium	Medium	
Sensitivity	В	Low	Medium	High	
əS	C	Medium	High	High	

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer	Medium	Low	Medium	High	
Table 1)	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Foundations		Structural performance	SP3		
Climate disturbance	Extreme Wind				
	Differential settlement of structure				
impact pathway	During extreme wind events, high forces will be tran lateral system. The higher forces must be resisted by compress more than expected under the higher forces	the soil. It is possible that the soil wil			

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Exposure to wind		large, high (10-30m) obstructions (city centres, well-developed industrial complexes)	obstructions, low (3-5m height obstructions	Exposed open terrain with no or few, well-scattered obstructions. Open water surfaces.
E2	Soil Profile (Assumes basaltic clay over rock in climatic zone 2 as defined by AS2870)			II Am OR gravelly or	Clay depth greater than 1.5m.

Step 2: answer the questions related to sensitivity below.

	Sensitivity of the system or element	Not applicable	A	В	С
S1	Foundation system		Deep foundations (concrete piles)	Shallow footings	
S2	Lateral system		Well distributed lateral system	Relatively few lateral elements. (Shear walls, braced frames, moment frames).	

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A)	Unknown (U)	Exposure			
		1	2	3	
vity	A	Low	Low	Medium	
Sensitivity	В	Medium	Medium	Medium	
Se	C	Medium	High	High	

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of	Low	Low	Low	Medium
Building Function to Building Use (refer	Medium	Low	Medium	High
Table 1)	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Retaining/site wal	ls	Structural performance	SP4		
Climate disturbance Extreme Rainfall					
	Overturning or sliding of retaining walls. Loss of soil from behind retaining walls				
1 7 41	Retaining wall failures (overturning, sliding) generally occur in saturated soils. More extreme rainfall will contribute to increase incidences of saturated soils. Alternately, retaining walls which allow soil to pass through (such as timber lagging) will see increased amounts of soil washing out from behind the wall.				

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Soil type		Clayey soil		Sandy soil
E2	In a flood zone?		INO Known Hood Issues	In flood investigation area	In flood basin

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	Retaining wall construction		Concrete retaining wall with adequate drainage behind wall Retaining wall is in good condition. No evidence of continuous presence of water (leeching or staining)	movement/tilting.	lagging where lagging has gaps between boards.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A)	Exposure					
		1	2	3		
vity	A	Low	Medium	Medium		
Sensitivity	В	Medium	Medium	High		
Ser	C	Medium	High	High		

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of Building Function to Building Use (refer Table 1)	Low	Low	Low	Medium
	Medium	Low	Medium	High
	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

EAGA & NAGA

Building Vulnerability Assessments

Building name:					
Date:		Building no. / ref:			
Basement wall		Structural performance	SP5		
Climate disturbance	Extreme Rainfall				
	Leaking of water into internal basement spaces, Corrosion and cracking of basement wall				
Impact pathway	During extreme rainfall events, basement walls wi surrounding soils. If water is not adequately draine basement walls into the building. The ingress of w basement as well as lead to corrosion and cracking	ed away from the wall, it may leak throu vater may cause damage to the contents	ıgh		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Soil type			Clay soils adjacent to wall and extending below foundation wall.	Permeable soils adjacent to wall underlain by clay soils within the basement height.
E2	In a flood zone?			No	Yes

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	Drainage systems	No Basement	Properly functioning drainage system installed around perimeter of basement. Basement walls appear to be in good condition, no staining or noticeable damp patches.		No drainage system or improperly functioning drainage system. Significant cracking or staining of basement wall. Signs of previous leaks in the form of damaged goods or water stains on the wall or floor.
S2	Basement material	INo Basement		Masonry basement walls.	

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A)	Unknown (U)	Exposure			
		1	2	3	
ivity	A	Low	Medium	Medium	
Sensitivity	В	Medium	Medium	High	
Se	C	Medium	High	High	

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)		
	High			
Importance of Building Function to Building Use (refer Table 1)	Low	Low	Low	Medium
	Medium	Low	Medium	High
	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

| Issue | 20 October 2015 | Arup

Building name:					
Date:		Building no. / ref:			
Roof structure Structural performance		SP6			
Climate disturbance	Extreme Rainfall				
	Leaking of roof. Sagging or failure of roof structure.				
Impact pathway	Rain may pond on rooftops if adequate drainage is not provided or drainage system is blocked. This ponding on the roof can contribute to leaks, and if excessive, can lead to overloading of the structure resulting in sagging or failure of the roof.				

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Does the roof receive direct rain?		No		Yes
E2	Vegetation/Plant debris can collect on roof?		No		Yes

Step 2: answer the questions related to sensitivity below.

IKEI	Sensitivity of the system or element	Not applicable	A	В	C
1.71	Drainage System of Roof	All roof slopes are to edge of roof (i.e. no	system which has protection from debris build-up. No reports of ponding during rain events.	Drainage system often blocked by debris. Presence of weep holes or secondary drainage outlet in parapets. Drainage system consists of some internal box gutters	No drainage system or system often blocked by debris. No weep holes or secondary drainage outlet in parapets. Reports of significant ponding of water during rain events. Drainage system predominantly consist of box gutters

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A) Unknown (U) Exposure						
		1	2	3		
vity	A	Low	Low	Medium		
Sensitivity	В	Medium	Medium	High		
Se	C	High	High	High		

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)			
		High			
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High	
	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:			
Date:		Building no. / ref:	
External walkways	/balconies	Structural performance	SP7
Climate disturbance	Extreme Rainfall		
Impact pathway	Rain may pond on balconies or suspended exteri provided or drainage system is blocked. This po- can lead to overloading of the structure resulting	for walkways if adequate drainage is not not nding can contribute to leaks, and if excess	sive,

Step 1: answer the questions related to exposure below.

	Exposure of the system or element	Not applicable	1	2	3
E1	Protected from direct rain?		Well covered with little rainfall onto walkway or balcony.		No structure above to prevent direct rainfall

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	С
S 1	Drainage of External Walkways or balconies		balconies have fall away from building. Balustrades to the walkway/balcony are open and allow free flow	External walkways or balconies have fall away from building. Balustrades to the walkway/balcony are solid with limited points of drainage.	External walkways or balconies are flat or have fall towards building. Balustrades are solid with no points of drainage or points of drainage well above floor level.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A)	Unknown (U)	wn (U) Exposure			
		1	2	3	
vity	A	Low	Low	Medium	
Sensitivity	В	Medium	Medium	High	
Se	C	High	High	High	

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of	Low	Low	Low	Medium
Building Function to Building Use (refer	Medium	Low	Medium	High
Table 1)	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:			
Date:		Building no. / ref:	
Roof structure		Structural performance	SP8
Climate disturbance	Extreme Wind		
	Damage / destruction of roofing material in wind even	ent.	
	During extreme wind events, roof material may lift o debris.	ff of the roof or be damaged by flying	ָל ר

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Exposure to wind		large, high (10-30m) obstructions (city centres, well-developed industrial complexes)	obstructions, low (3-5m height obstructions	Exposed open terrain with no or few, well-scattered obstructions. Open water surfaces.
E2	Height of Building		Roof above adjacent structures or trees		Roof at or below adjacent structures or trees

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	Roofing System		Metal sheet with	parapet. Tile or slate roofing	Glass or plastic skylight. Loose metal sheet, tiles or slate.
S2	Anchorage of Roofing System		Known fixings at regular spacing (intervals)		Unknown fixings.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A) Unknown (U) Exposure						
		1	2	3		
Sensitivity	A	Low	Low	Medium		
nsiti	В	Medium	Medium	Medium		
Se	C	Medium	High	High		

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of	Low	Low	Low	Medium
Building Function to Building Use (refer	Medium	Low	Medium	High
Table 1)	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:				
Date:		Building no. / ref:		
Roof, floor and wall structures		Structural performance	SP9	
Climate disturbance	Extreme Wind		-	
	Deformation of structure in extreme wind event			
	Excessive deformation in extreme wind event resulti serviceability (non-structural) failures.	ng in cracking of walls or other		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Exposure to wind		large, high (10-30m) obstructions (city centres, well-developed industrial complexes)	obstructions, low (3-5m height obstructions	Exposed open terrain with no or few, well-scattered obstructions. Open water surfaces.

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S 1	Height of structure		1-2 story structure	3-5 story structure	Tall structure (5+ stories)
S2	Construction Type		Concrete or masonry construction.	Steel or timber construction.	
S3	Reports of prior damage		Users have not noticed any change in structure during strong wind events.		Users have noticed or heard movement of building in wind event and noticed evidence of cracking in walls afterwards or notes of doors or windows sticking after / during wind events.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

otential Impact Rating				
Not applicable (N/A) Unknown (U) Exposure				
		1	2	3
vity	A	Low	Low	Medium
Sensitivity	В	Medium	Medium	Medium
Se	C	Medium	High	High

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)		
	Low Medium			
Importance of Building Function to Building Use (refer Table 1)	Low	Low	Low	Medium
	Medium	Low	Medium	High
	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Miscellaneous/lightweight structures		Structural performance	SP10		
Climate disturbance Extreme Wind			•		
	Damage to miscellaneous structures.				
Impact pathway	Excessive deformation in extreme wind event result architectural appendages (awnings, canopies, sun shot adequately anchored down.		ctures		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Exposure to wind		large, high (10-30m) obstructions (city centres, well-developed industrial complexes)	obstructions, low (3-5m) height obstructions	Exposed open terrain with no or few, well-scattered obstructions. Open water surfaces.

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	Material		Rigid materials not easily damaged by wind or impact from debris. Fabric or other resilient material.		Material is easily damaged by wind or impact from flying debris.
S2	Fixings		Adequate fixings directly to structure.		No fixings or attachment to structure or ground.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating					
Not applicable (N/A)	Unknown (U)		Exposure		
		1	2	3	
vity	A	Low	Low	Medium	
Sensitivity	В	Medium	Medium	Medium	
Se	C	Medium	High	High	

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer	Medium	Low	Medium	High	
Table 1)	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:			
Date:		Building no. / ref:	
Facade – exterior walls		Structural performance	
Climate disturbance Extreme rains + Extreme wind			
	Impact and damage from debris during extreme wind or rain events		
Impact pathway	Physical damage to walls can occur during heavy rain from adjacent landscaping. Trees or the like that tend of possible damage to adjacent buildings.	•	

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	and trees	trees adjacent to	Small, young trees or brush	llike	Trees or brush that lose large branches often Dead trees or brush
E2	adjacent buildings or	or lightweight	greater than 50m from	20m to 50m from the	Adjacent buildings are within 20m from building
E3	Are the window / door protected by a physical impact restraint barrier (i.e. large, thick concrete wall?		Yes		No

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	What is the wall material?		Thick timber or metal materials		Glass, plastic or similar brittle material (e.g. polycarbonate)

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rat	otential Impact Rating				
Not applicable (N/A) Unknown (U) Exposure					
		1	2	3	
vity	A	Low	Low	Low	
Sensitivity	В	Medium	Medium	Medium	
Se	C	Medium	High	High	

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Po	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of	Low	Low	Low	Medium
Building Function to Building Use (refer Table 1)	Medium	Low	Medium	High
	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Facade – window	/ doors	Structural performance	SP12		
Climate disturbance	Extreme rains + Extreme wind		•		
	Impact and damage from debris during extreme wind or rain events				
Impact pathway	Physical damage to windows and/or door can occur dislodge debris from adjacent landscaping. Trees or the greatest risk of possible damage to adjacent build NB: This does not look at damage to due to unlatche open during extreme events causing damage from additional control of the control of	the like that tend to lose branches will lings. Ed or unlocked windows or doors that	l have may		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	and trees	rrees adjacent to	Small, young trees or brush	llike	Trees or brush that lose large branches often Dead trees or brush
E2	adjacent buildings or	or lightweight	greater than 50m from	20m to 50m from the	Adjacent buildings are within 20m from building
Е3	Are the window / door protected by a physical impact restraint barrier (i.e. large, thick concrete wall?		Yes		No

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	What is the window / door material?		,	material	Glass, plastic or similar brittle material (e.g. polycarbonate)

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rat	ing			
Not applicable (N/A)	Unknown (U)		Exposure	
		1	2	3
vity	A	Low	Low	Low
Sensitivity	В	Medium	Medium	Medium
Se	C	Medium	High	High

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of Building Function to Building Use (refer Table 1)	Low	Low	Low	Medium
	Medium	Low	Medium	High
	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Facade – exterior	walls	Structural performance	SP13		
Climate disturbance	Extreme temperature + warmer temperature		5		
	Damage or failure of cladding materials				
Impact pathway	Physical damage to walls can occur during high tem adjacent systems possibly dislodging or damaging the conductive properties of the materials Extreme condintegrity/stability of the system. Expansion or controcan accommodate such expansion.	ne materials. Damage is depending on litions may result in safety concern wi	the th the		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Is there surrounding elements that Shade the building walls?		close proximity, less than 5m away from the	relative proximity less	No trees within proximity of greater than 2 x the height of the facade.

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	С
			Timber or brick cladding or wall system		
			II ile finish	Metals (aluminium or steel)	
S1	S1 What is the wall material?		Concrete walls	Plastics, e.g.	
			ICTIASS WALLS	polycarbonate, PVC, etc.	
			Weather board or fibre cement sheet		
			Yes -> 15mm wide		No expansion joints or
	Are there		joint at regular centres		expansion joints at
	expansion /		(<10m)		irregular or greater than
S2	control joints in		Haritaga haaru maaannu	Yes - <15mm wide	10m centres
32	the walls		Heritage heavy masonry building with no	ρ Θ	Heritage heavy masonry
	(vertical &		evidence of cracking	` /	building with cracking
	horizontal?		(particularly at corners		(particularly at corners
			or parapets)		or parapets)

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

tential Impact Rat	ing			
Not applicable (N/A)	Unknown (U)		Exposure	
		1	2	3
Sensitivity	A	Low	Low	Low
nsiti	В	Medium	Medium	Medium
Se	C	Medium	High	High

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of Building Function to Building Use (refer Table 1)	Low	Low	Low	Medium
	Medium	Low	Medium	High
	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:	_		
Facade – windows	& doors	Structural performance			
Climate disturbance	Extreme temperature + warmer temperature		-		
	Damage or failure of cladding materials				
Impact pathway	Physical damage to windows or doors can occuexpand and contact adjacent systems possibly depending on the conductive properties of the concern with the integrity/stability of the system between elements can accommodate such expanding	dislodging or damaging the materials. Dan materials Extreme conditions may result in m. Expansion or control joints within the v	nage is safety		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Is there surrounding elements that shield the building walls?		close proximity, less than 5m away from the	relative proximity less	No trees within proximity of greater than 2 x the height of the facade.

Step 2: answer the questions related to sensitivity below.

	Sensitivity of the system or element	Not applicable	A	В	C
	What is the window or door frame material?		Timber Glass walls	Metals (aluminium or steel) Plastics, e.g. polycarbonate, PVC, etc.	
S2	Are there expansion / control joints in between window or door frame and walls?		Yes – greater than 15mm wide joint at regular centres	yide joints)	No expansion joint or hard against wall or adjacent materials.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A) Unknown (U) Exposure						
		1	2	3		
vity	A	Low	Low	Low		
Sensitivity	В	Medium	Medium	Medium		
Se	C	Medium	High	High		

Step 4: For structural performance, the importance rating is related to the potential damage rather than the building use, as shown below. The default importance rating for the impact pathway on this sheet is shown in bold, however this should be reviewed for the specific circumstances of the building being assessed.

- Damage (e.g. cracking, sagging, doors / windows jamming) Medium
- Damage and significant secondary impacts (e.g. cracking in basements, damage to retaining walls) High
- Failure (e.g. roof sheeting tearing off) High

Given the potential impact and importance ratings obtained above, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer	Medium	Low	Medium	High	
Table 1)	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

5.6 Weather Proofing

Building name:			
Date:		Building no. / ref:	
Facade – windows,	doors & exterior walls	Weather proofing	WP1
Climate disturbance	Extreme rain		
Impact pathway	Water leaks due to ground runoff The volume and periods of rainfall increasing drastically can result in greater potential runoff along the ground towards a building. Design, composition and location of the bu amongst its surroundings will have an impact upon both the exposure and sensitivity. Tof landscaping, drainage and resistance of window/door and wall elements will determine overall vulnerability.		

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Is the building located in a flood plan?		No		Yes
E2	Does adjacent landscaping slope towards the building		Slope greater than 2°	Flat or less than 2° slope	Slope greater than 2 ⁰

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	Drainage systems		Properly functioning drainage system installed around perimeter & at doors/entry points	No drainage system	
S2	What is the type of landscaping adjacent to the building		material	Hard pavement or similar Dry soil	
S3	Where are door & wall elements in relation to grade height?		Above grade height (greater than 100mm)	At grade height	Below grade

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A)	Unknown (U)	Exposure				
		1	2	3		
vity	A	Low	Low	Medium		
Sensitivity	В	Medium	Medium	Medium		
Se	C	Medium	High	High		

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)		
		Low	Medium	High
Importance of	Low	Low	Low	Medium
Building Function to Building Use (refer	Medium	Low	Medium	High
Table 1)	High	Medium	High	Very high

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Facade – roofs		Weather proofing	WP2		
Climate disturbance	Extreme Rainfall				
	Water leaks from directional rain.				
	The volume and periods of rainfall increasing drastically can result in greater potential of water leaks in current roof construction. Design, composition and location of the building amongst its surroundings will have an impact upon both the exposure and sensitivity. The buildings ability to accommodate increased volumes of water, as well as their ability to shed this water away from the building will be affected, and may see water leaks occur into the building interior if it is unable to cope.				

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
EI	Is there surrounding elements that shield the roof?	Yes			No

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S 1	nitch of the		Pitch of roof between 5 and 10°.	Pitch of roof less than 5°.	
S2	What is the roofing material?	New metal sheet.	Concrete with liquid or torch membrane. Old metal sheet in good condition – corrosion free. New tiles or slate in good condition.	metal sheet roofing. Poor condition (chipped or displaced) tiles or	Bare concrete. Corroded or holes in metal sheet Missing tiles or slate.

S 3	water drained from the roof	New exterior gutter (eaves gutter) with overflow and debris guard.	Exterior gutter with overflows. Exterior gutter with debris guard. Old eaves gutter. Concrete roof with new drainage outlet and debris guard. Box gutter with symphonic drainage and overflow	Exterior gutter without overflow. Exterior gutter without debris guard. Concealed or box gutters with debris guards and overflow. Concrete roof with drainage outlet – grate. Shallow box gutters.	Shallow box gutters with low slope; visible ponding. Concrete roof with old drainage outlet –grate. Concrete roof with open drainage outlet – no debris guard. Concealed or box gutter without debris guard or overflow
54	Are there gaps in roof system or around penetrations?	No gaps.	Some penetrations through roof with seals.	Loose laps between materials creating fine gaps; daylight visible from interior Evidence of past leaks	Roof has large vent gaps & holes; daylight visible from interior Current water leaks experienced

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating							
Not applicable (N/A)	Unknown (U)	Exposure					
		1	2	3			
vity	A	Low	Low	Low			
Sensitivity	В	Medium	Medium	Medium			
Sei	C	Medium	High	High			

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Pe	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer	Medium	Low	Medium	High	
Table 1)	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

Building name:					
Date:		Building no. / ref:			
Facade – exterior	walls	Weather proofing WP3			
Climate disturbance	Climate disturbance Extreme Rainfall				
	Water leaks from directional rain.				
	The volume and periods of rainfall increasing drastically can result in greater potential of water leaks in current wall construction. Design, composition and location of the building amongst its surroundings will have an impact upon both the exposure and sensitivity. The buildings ability to accommodate increased volumes of water, as well as their ability to shed this water away from the building will be affected, and may see water leaks occur into the building interior if it is unable to cope.				

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Is there surrounding elements that shield the building facade?		buildings exist in close proximity, less than 5m	relative proximity between 5m to 10m	No trees or adjacent buildings within proximity greater than 10m
E2	What is the height of the building in relation to its surroundings?		Building is shorter than the height of adjacent buildings and dense vegetation.		Building is taller than adjacent surroundings
E3	overhang exist on the building facade relative	Large overhangs (1000mm +) continuous on the facade of the building.	Medium overhang present (150mm – 1000mm) continuous on the facade.	on the facade. Medium overhang	No protective overhang present (0mm – 50mm) on the facade. Small overhang (50mm – 150mm) intermittent on the facade.

Step 2: answer the questions related to sensitivity below.

IKet	Sensitivity of the system or element	Not applicable	A	В	C
	What is the condition of the seal between the wall & penetration?	No penetrations	Old continuous sealant	Sealant or gaskets have gaps, are cracked and/or loose.	No seal around penetrations; daylight can be seen from interior of building around penetrations.

S2	Is the material of the facade water resistant and in good condition?	Old brick/blockwork in good repair. Concrete walls with paint finish. Finished metal. Weatherboard or fibre cement sheet.	Minor corrosion to metal sheet. Brick/blockwork with some mortar damage. Bare concrete. Old metal Old weatherboard or fibre cement sheet.	Corroded metal sheet with gaps Brick/blockwork without mortar or extensive mortar missing. Cracks in Brick, blockwork, concrete. Decayed timber weatherboard
	What is the composition of the wall?	Rainscreen.	Face-seal with membrane or building paper Cavity brick wall Multi wythe or heavy masonry block/brick; typical of heritage building	Monolithic/Face-seal.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A)	Not applicable (N/A) Unknown (U) Exposure					
		1	2	3		
vity	A	Low	Low	Low		
Sensitivity	В	Medium	Medium	Medium		
Se	C	Medium	High	High		

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	Po	Potential Impact Rating (from previous step)			
		Low	Medium	High	
Importance of	Low	Low	Low	Medium	
Building Function to Building Use (refer	Medium	Low	Medium	High	
Table 1)	High	Medium	High	Very high	

Step 5: Copy high and very high vulnerabilities into Table 2.

| Issue | 20 October 2015 | Arup

Building name:				
Date:		Building no. / ref:		
Facade – windows	s & doors	Weather proofing WE		
Climate disturbance Extreme Rainfall				
impact pathway	Water leaks from directional rain. The volume or periods or rainfall increasing drastically will see current building contested. Design, composition and location of the building amongst its surroundings.			

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
E1	Is there surrounding elements that shield the building facade?		buildings exist in close proximity, less than 5m	relative proximity between 5m to 10m	No trees or adjacent buildings within proximity greater than 10m
E2	What is the height of the building in relation to its surroundings?		Building is shorter than the height of adjacent buildings and dense vegetation.		Building is taller than adjacent surroundings
E3	overhang exist on the building facade relative	Large overhangs (1000mm +) continuous on the facade of the building.	Medium overhang present (150mm – 1000mm) continuous on the facade.	on the facade. Medium overhang	No protective overhang present (0mm – 50mm) on the facade. Small overhang (50mm – 150mm) intermittent on the facade.

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	C
S1	What type of window system is present on building facade?	Non open able windows.	Awning windows. Casement windows.	Double hung windows Sliding windows Hopper windows.	

S2		Old, continuous and reasonable condition sealant and gaskets.	Loose seals. Brush seal present, but gap visible.	No seal present.
53	What types of doors are present on building facade?	Doors; small, outward	Doors; small, inwards opening Doors; inward or outward opening Garage doors Sliding door	Doors; with visible daylight. Garage doors with visible daylight.
54	What is the framing material to windows and doors?	Finished timber frames. Metal frames (no gaps present in frame).	Unfinished timber frames.	Metal frame with visible gaps between frame elements.

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

Potential Impact Rating						
Not applicable (N/A) Exposure						
		1	2	3		
vity	A	Low	Low	Medium		
Sensitivity	В	Medium	Medium	Medium		
Se	C	Medium	High	High		

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, (see Table 1) estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

	P	Potential Impact Rating (from previous step)					
	Low Medium						
Importance of	Low	Low	Low	Medium			
Building Function to Building Use (refer	Medium	Low	Medium	High			
Table 1)	High	Medium	High	Very high			

Step 5: Copy high and very high vulnerabilities into Table 2.

5.7 Fire Resistance

Building name:			
Date:		Building no. / ref:	
Whole building		Fire resistance	F1
Climate disturbance	Bush / grass fire	•	•
Impact pathway	Damage to building and/or injury to occupants Hotter, drier summers will increase the risk of bush a warning system following the Black Saturday fires in conditions are resulting in a need for adaptation.	2	

Step 1: answer the questions related to exposure below.

Ref	Exposure of the system or element	Not applicable	1	2	3
	Is the site in a bushfire prone area ² ?	No			Yes

Step 2: answer the questions related to sensitivity below.

Ref	Sensitivity of the system or element	Not applicable	A	В	С
S1	Has the building been built or retrofitted to the current bushfire construction standards (AS3959-2009)?		Yes		No

Step 3: Using the highest value from obtained from the exposure questions and the highest value obtained from the sensitivity questions, assess the potential impact rating from the matrix below.

otential Impact Rating							
Not applicable (N/A)	e Unknown (U) Exposure						
		1	2	3			
Sensitivity	A	Low	Medium	Medium			
nsiti	В	Medium	Medium	High			
Se	C	Medium	High	High			

Step 4: Given the potential impact rating obtained above and the importance of building function to building use, estimate the overall vulnerability of the Building Component being assessed, using the following matrix.

The importance of fire resistance for a particular building is related to whether the building is likely to be occupied during periods of fire risk, the impact of the asset being unavailable after a fire, and the cost to repair / rebuild the asset if damaged by fire. These need to be considered carefully for the specific building being assessed. The following is offered for consideration:

- Low importance may be appropriate for a building that does not deliver critical services, that is fully insured, and/or that will be unoccupied during a fire (e.g. because Council policy is for it to be unused on Extreme and Code Red fire days).
- High importance may be appropriate for a building that has limited evacuation routes (e.g. 1 road that could easily become impassable during a fire), or which is needed to act as a relief / recovery centre immediately after the fire.

	P	Potential Impact Rating (from previous step)					
Low Medium							
Importance of	Low	Low	Low	Medium			
Building Function to Building Use (refer	Medium	Low	Medium	High			
Table 1)	High	Medium	High	Very high			

Step 5: Copy high and very high vulnerabilities into Table 2.

 $^{{}^2~}See~\underline{www.dtpli.vic.gov.au/planning/planning-and-building-for-bushfire-protection/building-in-bushfire-prone-areas\#BPA to obtain a site specific report, or to use the interactive map to review bushfire zones.} \\ {\tiny |Issue\,|\,20\,October\,2015\,|\,Arup}$

6 Prioritised Vulnerabilities Action Sheet

Table 2 – Action table

Vulnerability	C	Option	Pros	Cons	Estimated cost
	Options to reduce exposure				
	Options to reduce sensitivity				
	Options to reduce importance of functional requirement to use				
	Options to reduce exposure				
	Options to reduce sensitivity				
	Options to reduce importance of functional requirement to use				

Vulnerability		Option	Pros	Cons	Estimated cost
	Options to reduce exposure				
	Options to reduce sensitivity				
	Options to reduce importance of functional requirement to use				
	Options to reduce exposure				
	Options to reduce sensitivity				
	Options to reduce importance of functional requirement to use				

| Issue | 20 October 2015 | Arup

J:\245000\245632-00 EAGA NAGA BVA\WORKINTERNAL\6. FINAL OUTPUTS\15-12-10 BUILDING ASSESSMENT SHEETS - ISSUE.DOCX