Framework for Biodiversity Monitoring in Melbourne's East

Project Launch 12th August 2015

THE UNIVERSITY OF **MELBOURNE**

Aim of the project

- To provide a resource for council officers to monitor urban biodiversity and habitat 'health' under a changing climate.
- Develop a framework that can help to inform management strategies and adaptive management techniques.

The Team

Technical Reference Group

Why biodiversity monitoring is important

- Increasing urbanisation- gradual degradation of urban matrix & biodiversity habitat
- Suburbs in east Melbourne will get hotter and drier
- There will be increases in the intensity of rainfall events in summer and autumn
- Increased number of heat waves
- Likely decline of certain species, but will benefit others
- Many species and EVC's of particular concern
- Councils are taking actions to manage biodiversity under these changes, but are these actions effective??

Why Councils?

- Councils are extremely well-placed to make a difference to urban biodiversity and monitor climate impacts
 - Operate at the appropriate scale to measure change
 - Make decisions and carry out actions to manage change
- But, each Council is resourced differently, has different natural assets, different priorities and different skill sets
- The task was to develop a framework that accommodated these differences

Biodiversity monitoring in Australia

- Very few examples of biodiversity monitoring in urban areas in Australia
- Some Councils do site specific monitoring
- Some done by CMA's
- Examples of regional monitoring are rare
 - CSIRO provide conservation policy guidance
 - Local and Regional examples from QLD, WA
 - National 'accounting for nature' program

Components of effective monitoring programs

- Conceptual framework or model of the system
- Questions and achievable goals
- Repeatable and appropriate measurements/indicators
- Data and good data management
- Appropriate analysis and interpretation
- Accessible results that can be used by multiple parties
- Good partnerships between scientists, resource managers, policy makers

Developing a program:

- Step 1:
 - Define the problem and the system to be monitored
 - Define questions to ask and goals of the program
- Step 2:
 - Develop a set of indicators & collection methods
 - These need to capture enough data to meet the goals of the project
- Step 3:
 - Develop pathways for data management, reporting, assessment and adaptive management
- Step 4:
 - Adjust as necessary without compromising the integrity of the program

Step 1. Define the problem and system

- Initial scoping workshop
 - What good and bad monitoring looks like
 - Began defining framework goals
 - Council's capacity to collect and analyse data
 - Principles for indicator selection
- Extensive document review
 - Review of activities occurring in every LGA & <u>why</u>
 - Their frequency and purpose
 - Type of data generated by each activity
 - But this only captures formal activities that appear in documents

Step 1. Define Questions and Goals

- Second workshop used 'Program Logic' to capture ALL activities and aspirations of Councils in relation to biodiversity & climate change
- Used PL to link *what* program will do, and *how*
 - Set broad program objectives
 - Listed activities Councils do to reach those objectives
 - Discussed the difficulties of addressing climate impacts, urban impacts and differences between Councils

Step 1. Define Questions and Goals

Goal: The EAGA region has resilient and functioning ecosystems that can adapt to climate change

- Diverse indigenous habitat, including native flora and fauna
- Reduced weed cover
- Increased or sustained species numbers
- Greater connectivity among habitat patches
- Improved habitat quality (condition and extent)
- Increased or greater value placed on biodiversity by the community

Step 2. Develop Indicators

- Started with a dream list of indicators/measurements
- Things we considered.....
 - Measureable
 - Reliable/reproducible
 - Sensitive to change
 - Predictable or well studied
 - Consistent (& accurate), or comparable across a range of settings
 - Respond to management interventions
 - e.g. if you are tracking response against your actions such as weed control, you need data for intervention sites vs control sites

Step 2. Develop Indicators

- To refine the indicators we
 - Ran a series of workshops
 - Discussed what data would be collected, and how it could be used to answer a specific question
- Types of indicators proposed included
 - Plant species and communities
 - Animal species (occurrence on public and private land, including revegetation sites)
 - Weed cover and presence of feral animals
 - Survival of heat intolerant plant species
 - Production of seed

Short-listed Indicators

- 1. Vegetation extent
- 2. Vegetation connectivity
- 3. Vegetation condition
- 4. Vegetation composition
- 5. Plant survival
- 6. Plant or animal phenology
- 7. Bird communities

Short-listed Indicators

- These were reviewed and ranked by the PWG and TRG
- Ranking based on:
 - Relevance to climate change & biodiversity
 - Capacity
 - Cost
 - Historic data
 - Data management
 - Freq of measurement
 - Opportunity to includes citizen scientists

Final short-listed Indicators

1. Vegetation extent

- 2. Vegetation connectivity
- 3. Vegetation condition
- 4. Vegetation composition
- 5. Plant survival
- 6. Plant or animal phenology
- 7. Bird communities

Step 3. Develop Methods

- Pathways to collect the data, including management, storage, analysis and reporting
- We reviewed current methods for shortlisted indicators
 - Sub-project on vegetation condition/HH methods being used
- GIS layers available
- Community programs currently in place, others we could build-in

Step 3. Develop Methods

- We developed methodology for each
 - Including developing partnerships with other agencies to facilitate data collection
- Two agencies in the region already had well established programs

We tailored two of

the indicators to

existing programs

Step 3. Develop Methods

Framework Trial Dec 2014 – April 2015

- 1. Vegetation extent
 - GIS approach used
- 2. Vegetation condition/change
 - Modified HH approach
- 3. Plant or animal phenology
 - Climate Trails established
- 4. Local bird communities
 - Birdlife Program established

Step 4. Trial to adjust as necessary

Review of methods

- Quality of data collected
- Did each indicator collect data appropriate to answer each monitoring question?
- If not it was revised
 - All methods, definitions, data capture and data storage processes were revised during this process

Vegetation extent

- Q. What is the extent of native vegetation in the region?
- Q. Has the extent of native vegetation changed over time and if so, where has it changed?
- Creation of GIS layer for each LGA
- Reporting of vegetation extent on Council land:
 - Type 1 Existing native vegetation under management; OR
 - Type 2 New, future extent (area proposed to be targeted for future bushland renewal)

Vegetation change

- During the trial vegetation condition data collected by all councils at:
 - 31 sites, composed of 69 plots
 - Including 24 plots with 2 observers
 - Quality of the data was assessed
 - Significant inter-observer variability
 - Imprecise measurements
 - Many attributes were poor indicators of management actions
 - Therefore of limited value for monitoring
 - New quantitative method developed and implemented

Vegetation change

- Condition estimates are typically designed to be rapid and give a coarse indication of the relative quality of the vegetation attributes relative to a pre-determined benchmark
- Monitoring change over time requires a much more sensitive approach because an estimate of change is of little value if it is highly uncertain

Vegetation change

- Understorey cover
- Species diversity and composition
- Recruitment of woody plants
- Mortality of woody plants
- Logs
- Tree density
- Tree and large shrub cover
- Recommended
 10-20 sites per LGA are
 included (2 quadrats ea)

Phenology Trails

- Changes in the timing of natural events such as nesting, flowering, seed setting
- Q. Is the timing or duration of breeding or flowering of targeted species changing over time?
 - Where is this occurring and for what species?
 - How much change has occurred?
- Sites were selected in Monash, Knox and Stonington
- Trails advertised by ClimateWatch, and to community and School groups

Glen Iris Wetlands ClimateWatch trail

Location	Species	Location	Species
1	Start of ClimateWatch Trail - information board	6	Sign to Bird Hide
2	Banksia Marginata (Silver Banksia)	7	Australian magpie (Cracticus tibicen), Dusky Moor Hen (Gallinula tenebrosa), Crested Pigeaon (Ocyphaps lophotes), Eastern Spinebill (Acanthorhynchus tenuirostris)
3	Dusky Moor Hen (Gallinula tenebrosa)	8	Hickory Wattle (Acacia implexia)
4	Wetlands Walk - information board	9	Striped Marsh Frog (Limnodynastes peronii), Eastern Banjo Frog (Limnodynastes dumerilii)
5	Striped Marsh Frog (Limnodynastes peronii), Eastern Banjo Frog (Limnodynastes dumerilii)	10	

Lakewood Nature Reserve ClimateWatch trail

Location	Species	
1	ClimateTrail start/end	
2	Interpretive sign	
3	Eastern Pobblebonk Frog (Limnodynastes dumerilli)	
4	Black Swan (Cygnus atratus)	
5	Australian Magpie (Cracticus tibicen), Grey Fantail (Rhipidura albisca), Common Brown Butterfly (Heteronympha merope), Garden Skink - Southern (Lampropholis guichenoti)	
6	Australian Magpie (Cracticus tibicen), Grey Fantail (Rhipidura albisca), Common Brown Butterfly (Heteronympha merope), Garden Skink - Southern (Lampropholis guichenoti)	
7	Blackthom (Banksia spinosa)	

Bird Communities

- 36 sites selected for inclusion
 - Ranged in condition
 - All had baseline condition assessments
 - Community groups have already started bird surveys
 - More sites can be added in the future
- Workshop 1 council training (29 attended)
- Workshop 2 community training (80 members of the public attended)
 - Outlined the survey requirements and methods
 - Training in bird identification and surveys
 - Training in data collection and reporting

http://birdlife.org.au/projects/biodiversity-monitoring-in-melbourneseast

Lessons

- Under a changing climate, we can't manage biodiversity as a static entity
- The EAGA Councils now have greater capacity to monitor biodiversity under a changing climate
 - And tested methods to do so
- Less is more
 - Four indicators have very detailed methodology, and Councils are committed and able to collect data for each
- Capturing existing formal and informal monitoring was important to get buy in

Successes

• This partnership is successful because:

- It links science, policy, and on-ground actions
- Facilitates cross-tenure collaborations (species will move)
- It is user friendly, flexible and acknowledges differences in resourcing
- Provides data to identify stories for the community
- Provides a springboard for future partnerships (NGO's, Universities, Government agencies) & a resource for others

Part I and Part II Framework documents

EAGA BIODIVERSITY MONITORING FRAMEWORK 2015

- PART I DISCUSSION PAPER
- PART II INDICATOR IMPLEMENTATION GUIDE

http://eaga.com.au/projects/biodiversitymonitoring-in-melbournes-east/

Acknowledgements

- Thank you to the PWG and TRG
- Project partners
- Community groups
- Funding Agencies

