Training Material Contents

Part 2: Foundation concepts

Summary of projected climate change for region

Summary of assessment concepts

Notes

Part 3: Guided Assessment

Building description worksheet

Thermal comfort assessment worksheet

Structural performance worksheet

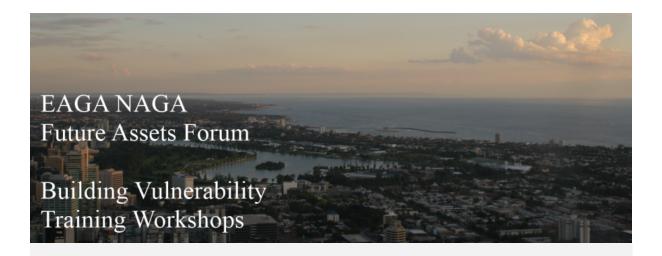
Formulating actions worksheet

Part 4: Self-Assessment

Steps for undertaking an assessment

Building description worksheet

Thermal comfort assessment worksheet


Structural performance worksheet

Formulating actions worksheet

Workshop and program outline

Workshop 1 (Thurs 22nd October)

- 1. Climate change and buildings why respond?
- 2. Introducing a method to assess a building's vulnerability to climate change
- 3. Guided case-studies on applying the vulnerability assessment
- 4. How to undertake council-specific assessments (take-home exercise)

Workshop 2 (Thurs 19th November)

- 1. Sharing of assessment learnings
- 2. Case-study presentations across councils, with specific experiences from City of Whitehorse
- 3. Essential Services Commission presentation on Local Government Rates Capping & Variation Framework, with Q&A
- 4. Discussion forum on vulnerability assets and current asset management practices

Optional pre-reading

David Logan, *Manager Capital Works*, *City of Whitehorse*, wrote a short paper on the vulnerability assessment approach developed by Arup and the council. He describes the methodology from an asset manager's perspective, and discusses key findings for the council.

The paper can be accessed freely at the following link. https://www.ipwea.org/RoadsTransportDirectorate/ViewDocument/?DocumentKey=909371f7-9ffa-4123-882c-c9bceb52d239

Part 2:

Foundation concepts

Summary of projected climate change for the NAGA region

Change in climatic exposures and trend	Metric	2030	2070		
Warmer and/or fewer cold days and nights over most land areas	Fewer frosts (days where the minimum temperature falls to 2°C or less) 3 in 2007	2 in 2030	0 in 2070		
Warmer and/or more frequent hot days and nights over most land areas	An increase in average annual temperature	0.8°C by 2030	2.6°C by 2070		
Warm spells/heat waves. Frequency and/or duration increases over most land areas	An increase in the average number of days >30°C, from 30 in 2007	34 in 2030,	49 in 2070		
	An increase in the average number of days >35°C, from 9 in 2007	11 in 2030	20 in 2070		
	An increase in the average number of days >40°C, from 1 in 2007,	2 in 2030	5 in 2070		
	An 'urban heat island' (UHI) effect will lead to additional increases in temperature in built-up areas due to increasing numbers of buildings and hard surfaces.				
Heavy precipitation events, increase in the frequency, intensity and/or amount of heavy precipitation	An increase in rainfall intensity during winter months. Alongside more frequent and severe storm events	2.6 per cent increase by 2030	17 per cent increase by 2070		
Increases in intensity and/or duration of drought	A reduction in average rainfall. Greatest reduction to occur during spring	4 per cent by 2030	11 per cent by 2070		
	A reduction in rainy days during summer. 6 per cent by 2030 Increased occurrence of drought		20 per cent by 2070		
Increase incidence and/or magnitude of extreme high sea level	An increase of 0.20m by 2040, 0.47m by 2070 and 0.82m by 2100				
Changes in wind velocity	Inconclusive				
Increased bushfire frequency and intensity	In Melbourne, the number of 'extreme' fire danger days is expected to increase by between 12 per cent and 38 per cent by 2020, and by between 20 per cent and 135 per cent by 2050				

Summary of projected climate change for the EAGA region

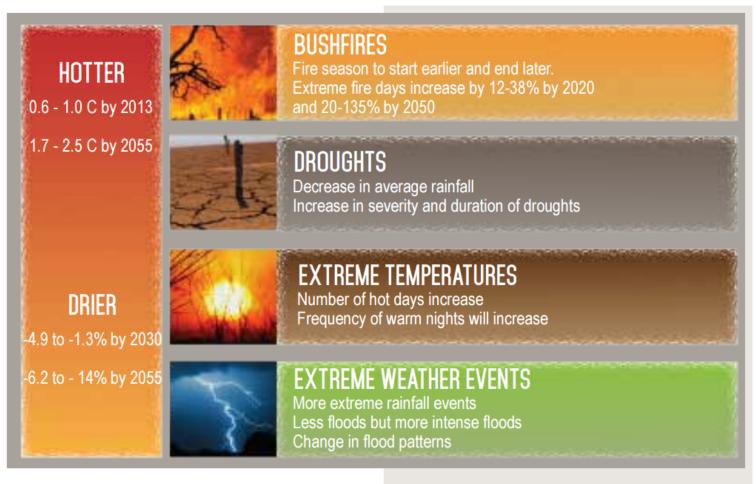


Figure 1: Climate change projections for Melbourne's EAGA region (CSIRO 2013)

Building Vulnerability Training Workshop 1

Activity 1 – Importance of functional requirements to building use

In groups, discuss / debate the following:

- Is thermal comfort more, less or equally important at an office compared to a childcare centre? Why?
- Is power supply more, less or equally important at a community hall compared to a leisure centre? Why?
- Is power supply more, less or equally important at a community hall (that is also designated as a relief / recovery centre) compared to a leisure centre? Why?

Share your answers with the group

Activity 2 – Relationship between functional requirements and building components

Connect the functional requirements to the components that provide them

Functional requirements Structural performance	Building components Walls
Thermal comfort	Roof
	Windows
Air quality	Floors
Sanitation	Foundations
Power	Doors
	Air-conditioning
Communications	Electrical Switchboard
Weather resistance	Sewer
Fire resistance	Water supply
	Phone line

Notes		

Notes		

Part 3:

Guided Assessment

An example building

Inner city childcare centre

1970s brick building built on clay ground, with shallow footings and a concrete slab above.

The walls have no movement joints.

Metal finish corrugated roof.

The building is naturally ventilated using the windows.

It uses a Mitsubitshi ceiling cassette air conditioning units (model SLZ-KA50VA) – the outdoor (heat rejection) unit is located on the roof.

Building Vulnerability Training Workshop 1

SLZ-KA Series

Compact ceiling cassette

OUTDOOR UNIT

WIRED

Туре					Inverter Heat Pump (R410A)	
Model Na	me			SLZ-KA25VA	SLZ-KA35VA	SLZ-KA50VA
Indoor Un	it			SLZ-KA25VA(L)*	SLZ-KA35VA(L)*	SLZ-KA50VA(L)*
Outdoor (Jnit			SUZ-KA25VA2	SUZ-KA35VA2	SUZ-KA50VA2
ower Su	ipply [V, Phase, Hz]			23	80V, Single, 50Hz, Outdoor unit power su	pply
Cooling	Capacity [Min R	ated - Max.]	kW	0.9 - 2.5 - 3.2	1.0 - 3.5 - 3.9	1.1 - 4.6 - 5.2
	Total Input [Min	Rated - Max.]	kW	0.25 - 0.68 - 1.00	0.27 - 1.04 - 1.33	0.49 - 1.53 - 2.13
	Rated EER			3.68	3.37	3.01
	[5	Star Rating		2.0	1.5	1.0
	Running Current [Rated]	Α	3.70	5.00	6.90
	Sound Pressure	N [Lo - Med - Hi]	dB(A)	28 - 31 -37	29 - 33 - 38	30 - 34 - 39
	Level	OUT at 1m (PWL)	dB(A)	46 (59)	47 (60)	53 (68)
	Air Volume (IN) [L	o - Mid Hi]	l/S	133 - 150 - 167	133 - 150 - 183	133 - 150 - 183
leating	Capacity [Min R	ated - Max.]	kW	0.9 - 3.0 - 4.5	0.9 - 4.0 - 5.0	0.9 - 5.0 - 6.5
	Total Input [Min	Rated - Max.]	kW	0.17 - 0.85 - 1.36	0.25 - 1.09 - 1.46	0.39 - 1.55 - 3.36
	Rated COP			3.76	3.67	3.22
	[Star Rating		2.0	2.0	1.5
	Running Current [Rated]	Α	4.30	5.1	7.10
	Sound Pressure	N [Lo - Med - Hi]	dB(A)	28 - 31 -37	29 - 33 - 38	30 - 34 - 39
	Level	OUT at 1m (PWL)	dB(A)	46 (59)	48 (61)	55 (68)
	Air Volume (IN) [L	o - Mid Hi]	l/S	133 - 150 - 167	133 - 150 - 183	133 - 150 - 183
tarting C	urrent		Α	3.65	4.75	6.75
lax. Runr	ing Current		Α	8.16	9.18	16
door	Input [Rated]		W	75	85	85
	Dimensions [H x V	V x D]	mm	208 x 570 x 570	208 x 570 x 570	208 x 570 x 570
	F	Panel	mm	20 x 650 x 650	20 x 650 x 650	20 x 650 x 650
	Weight (Panel)		kg	16.5 (3)	16.5 (3)	16.5 (3)
utdoor	Dimensions [H x	W x D]	mm	550 x 800 x 285	550 x 800 x 285	850 x 840 x 330
	Weight		kg	33	37	53
	Breaker Size		Α	10	10	20
xt. Piping	Diameter (Gas / L	iquid)	mm	9.52 / 6.35	9.52 / 6.35	12.7 / 6.35
	Max. Length / Hei	ght	m	20 / 12	20 / 12	30 / 30
uarantee	d Operating Range	Cooling	°C	-10 ~ 46	-10 ~ 46	-10 ~ 43
Outdoorl	F	Heating	°C	-15 ~ 24	-15 ~ 24	-15 ~ 24

Importance of Functional Requirement to Building Use

Note – these are indicative only – they should be adjusted as appropriate in the context of the specific building and service delivery being assessed

	Importance of function to building use							
Building use	Thermal comfort	Air quality	Power	Access (lifts)	Structural performance	Weather resistance	Fire resistance	
Town Hall	Medium	Medium	Medium	Medium		Medium	The importance of	
Administrative offices	Medium	Medium	High	Medium		Medium		
Library	Medium	Medium	Medium	Medium		High		
Gallery	Medium	Medium	Medium	Medium	Importance for all buildings is based on	High	fire resistance for a	
Theatre / performing arts centre	Medium	Medium	Medium	NA	Damage (e.g. cracking, sagging, doors / windows jamming) – Medium Damage and significant	Medium	particular building is related to whether the building is likely to be occupied during periods of fire risk,	
Age care facility	High	High	High	High		Medium	the impact of the asset being	
Council Depot	Medium (office) Low (workshops)	Medium	High	NA	secondary impacts (e.g. cracking in basements, damage to retaining	Medium	unavailable after a fire, and the cost to repair / rebuild the	
Leisure Centre	Low	Medium	Medium	Medium	walls) – High	Medium	asset if damaged by fire. These need to be	
Sport oval and pavilions	Medium	Medium	Medium	Low	Failure (e.g. roof sheeting tearing off) – High	Medium	considered carefully for the specific building being	
Childcare centre	High	High	Medium	Low		Medium	assessed.	
Emergency relief / recovery centre	Medium	Medium	High	Medium		High		

Formulating actions worksheet

Vulnerability	Option	Pros	Cons	Estimated cost
	Options to reduce exposure			
	Options to reduce sensitivity			
	Options to reduce importance of			
	functional requirement to use			

Formulating actions worksheet

Vulnerability	Option	Pros	Cons	Estimated cost
	Options to reduce exposure			
	Options to reduce sensitivity			
	Options to reduce importance of			
	functional requirement to use			

Part 4:

Self-assessment

Steps for undertaking an assessment

The building component assessment sheets facilitate an assessment using a step-by-step approach. For further details on the steps, please see the following instructions:

- 1. Fill out the relevant individual Building Component Assessment Sheets.
 - a. On each sheet, answer the prompting questions related to *Exposure* and *Sensitivity* as best matches the building.
 - b. Use the highest exposure and sensitivity to determine the *Potential Impact Rating*.
 - i. If **all** aspects of exposure or sensitivity are not applicable, then select *Not Applicable* at the bottom of the page.
 - ii. If aspects of exposure or sensitivity are unknown, then select *Unknown* at the bottom of the page. The only exception is when one aspect is "unknown", but another has a "high" exposure or sensitivity. In this case, use the "high" to determine the impact rating, because it suggests that the component is already particularly exposed or sensitive to the climatic variable in question.
- 2. Combine the *Potential Impact Rating* and the importance of *Building Functional Requirement* to Building Use to estimate the vulnerability rating.
- 3. Transfer the vulnerability ratings to the Prioritised Vulnerabilities Action Sheet. Arup recommends the following responses to the vulnerability scores:
 - a. "Very high" vulnerabilities should be considered further for priority capital works spending.
 - b. "High" and "medium" vulnerabilities be considered at times of refurbishment and replacement.
 - c. "Unknowns" should be investigated where practical. Alternatively, a conservative approach could be taken and assume the worst case for the unknown aspect.

Building Vulnerability Training Workshop 1

Prioritising assessments (a streamlined processed)

Undertaking comprehensive climate change vulnerability assessments for every building within a Council's portfolio is likely to be beyond the resources of most Councils.

Whilst an assessment across the Council's portfolio will be comprehensive, there is a strategic and streamlined approach to building assessments. Councils can prioritise the buildings that they wish to assess in different ways:

- by building use
- by climate event

Part 5:

Take home activity

